Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия защитные влияние различных факторов

    Среди применяемых средств защиты металлов от коррозии защитные покрытия получили наибольшее распространение, но их выбор и применение в каждом конкретном случае далеко не всегда научно обоснованы. Это объясняется многокомпонентно-стью системы металл-покрытие и влиянием различных факторов на поведение этой системы. Надо отметить, что электрохимический характер коррозии оборудования в отрасли является преобладающим в связи с присутствием воды в рабочих средах. Коррозионный процесс под покрытием — металлическим или лакокрасочным — также является электрохимическим по своей природе. Поэтому современные исследования направлены на изучение не только физико-химических процессов, происходящих в материале покрытий при контакте их с жидкостями и газами, но и электрохимических процессов в системах "металл-покрытие-электролит". [c.6]


    Коррозия луженых консервных банок — сложный процесс, опеределяемый многими факторами, важность которых зависит от условий. Так, например, соединения серы реагируют с оловом и создают пленки, препятствующие проявлению защитного действия полуды. Важным моментом является с разование железооловян ного соединения РеЗПа в процессе оплавления электролитически полученного оловянного покрытия либо при горячем лужении. Это соединение инертно в условиях, существующих внутри луженной консервной банки. Ионы двухвалентного олова в растворе замедляют растворение стали, воздействуя на эффективность анодного ингибирования. Имеются и другие важные факторы. Их совместное влияние оценивается различными испытаниями луженых консервных банок, связывающими- длительность хранения с характером содержимого.  [c.152]

    Выбор материала покрытия и соответствующего способа его нанесения определяют различными факторами, прежде всего эксплуатационными условиями, габаритахми и конфигурацией аппарата. Конструкционные особенности аппарата оказывают порой решающее влияние на выбор способа нанесения защитного покрытия. Знание хотя бы общих сведений о существующих методах нанесения покрытий из разнообразных материалов важно как для конструктора, так и для лиц, занимающихся. монтажом и эксплуатацией химических аппаратов, поскольку в подавляющем большинстве случаев вопросы противокоррозионной защиты металлического оборудования приходится решать на монтажной площадке или в процессе ремонтно-восстановительных работ. Это объясняется тем, что заводы химического машиностроения, как правило, не выпускают химические аппараты с защитными полимерными покрытиями. [c.235]

    Влияние различных факторов на величину активной поверхности алюминия, покрытого защитной пленкой [c.65]

    При повышенных температурах эксплуатации повреждение покрытий (отслоение, разрушение) происходит под влиянием различных факторов и особенно разности коэффициентов термического расширения металла и полимера. Коэффициент линейного расширения пленки полиэтилена высокой плотности (110-10 ) превосходит коэффициент линейного расширения стали (11,3-10 ) в десять раз. Для снижения коэффициентов термического расширения полимерных материалов, применяемых для тонкослойных защитных покрытий, в них вводят различные наполнители, практически не влияющие на другие свойства полимеров. Высокая адгезия к стали пленки полиэтилена, модифицированного графитом, сохраняющаяся при колебаниях температур от 20 до 100° С, объясняется не только снижением степени кристалличности полиэтилена, но и значительным снижением коэффициента термического расширения покрытия за счет графита, коэффициент термического расширения которого равен 3,5 10 . [c.180]


    Металлические покрытия, в основном алюминиевые и цинковые, применяют для защиты от коррозии в минерализованных водах, содержащих различные газы, а также в морской воде. В хлорсодержащих растворах как алюминий, так и цинк — аноды по отношению к стали, защищая ее электрохимически. Однако в процессе коррозии в результате поляризации или влияния других факторов возможно изменение знака покрытия. Такой эффект наблюдается для цинковых покрытий в горячей воде, особенно если в систему попадает кислород. Максимум скорости коррозии достигается в температурном интервале 338—343 К, что связано со строением окисной пленки, отличающейся пористостью и обеспечивающей доступ кислорода к металлу. Совместно наличие кислорода и углекислоты в минерализованной воде значительно ускоряет коррозию цинкового покрытия (табл. 20). При этом мягкая и дистиллированная вода более агрессивна по отношению к цинку, чем жесткая, которая способствует образованию защитных пленок. [c.79]

    В то же время в случае водорастворимых материалов от пигментов зависят не только декоративные и защитные свойства лакокрасочного покрытия, но и сам процесс окрашивания. При этом необходимо учитывать как повышенную склонность пигментов к оседанию, особенно в ваннах электроосаждеиия, в которых используют растворы с низкими концентрацией и вязкостью, так и возможность неравномерного осаждения пигментов при образовании пленки (неравномерная выработка ванны по пигменту) и их влияние на такой важный параметр, как рассеивающая способность. В [147] указывается, что разные сорта диоксида титана дают пленки с различным электрическим сопротивлением. На этот параметр влияет и степень пигментирования материала, хотя основным фактором, определяющим эту важнейшую характеристику водорастворимого материала, остается тип пленкообразователя. [c.80]

    Изучение влияния исходной надмолекулярной структуры покрытий на их устойчивость к процессам старения позволило установить, что характер и плотность упаковки структурных элементов определяют механизм разрушения покрытий под воздействием эксплуатационных факторов. Закономерности образования надмолекулярных структур практически не зависят от условий старения покрытий. Изменение этих условий определяет лишь вид и степень разрушения покрытий, что, тем не менее, существенно сказывается на защитном действии покрытий. Старение покрытий в различных условиях эксплуатации проявляется в потере блеска, изменении цвета, мелении, растрескивании, отслаивании и возникновении подпленочной коррозии. Экспериментальные данные свидетельствуют о том, что практически все свойства покрытий обусловлены процессами структурных превращений, протекающих на молекулярном, топологическом, надмолекулярном и фазовом уровнях. [c.84]

    Рассмотрим влияние основных факторов на защитные свойства покрытий. Сравнивая коррозионную стойкость цинковых покрытий, полученных различными методами (рис. 7.19), можно заметить, что применение электрохимических покрытий предпочтительно. Их высокая защитная способность объясняется, с одной стороны, образованием более чистых в химическом отношении осадков, с другой стороны, мелкозернистой и плотной структурой. Термообработка цинковых покрытий при 400. .. 500 °С в течение 10. .. 20 мин позволяет повысить защитную способность в 2. .. 4 раза в результате образования однородного сплошного слоя железоцинкового сплава. , г Защитная способность покрытий тес- но связана с технологией их нанесения. На рис. 7.20 приведена классификация технологических факторов, оказывающих непосредственное влияние на свойства покрытий, наносимых электрохимическим методом, [c.185]

    На покрытие в условиях грунта действует комплекс факторов, создающих в нем различные механические напряжения. Однако практически наибольшее влияние на изменение защитной способности покрытий трубопроводов во втором периоде оказывают напряжение растяжения, приложенное в момент нанесения внутренние термоупругие напряжения растяжения, возникающие вследствие перепадов температуры напряжения растяжения, возникающие под влиянием внутреннего статического давления в трубопроводе добавочные напряжения о , возникающие в материале покрытия у вершины трещин под влиянием двумерного давления молекул поверхностно-активной среды, роль которой выполняет почвенная влага с растворенными в ней веществами, а также под влиянием расклинивающего действия почвенных частиц /.  [c.74]

    Переходное сопротивление труба — земля уменьшается в процессе эксплуатации трубопровода под влиянием большого количества факторов, различных по характеру и степени воздействия. Основной причиной изменения переходного сопротивления является ухудшение защитных свойств изоляционных покрытий, выражающееся, прежде всего, в возникновении и росте числа и размеров дефектов в покрытии с момента его нанесения на трубопровод и на протяжении всего периода эксплуатации. Эти факторы связаны с работой трубопровода, с одной [c.188]


    При интенсивном развитии химической и нефтехимической промышленности необходимо качественно новое оборудование для проведения различных технологических процессов, которые обычно протекают при высоких температурах, давлениях, резких их сменах и в больших объемах. Этим требованиям лучше всего удовлетворяет крупногабаритная химическая аппаратура с защитным эмалевым покрытием. Получение качественного эмалевого покрытия — достаточно трудная задача из-за сложной конструкции и больших размеров аппаратуры. При эмалировании таких аппаратов в процессе оплавления эмалевого покрытия возникает температурный перепад до 100° С, который во многом предопределяет протекание процессов формирования покрытия. В связи с этим необходимо знать температурные условия формирования покрытия, влияние на них отдельных факторов. [c.57]

    Таким образом, приведенные в работе экспериментальные данные свидетельствуют о необходимости изучения влияния различных факторов на защитные свойства полимерных покрытий, получаемых. методом ЭХИП. [c.143]

    Проблема заш,иты оборудования от эрозионного износа является весьма актуальной. Имеющиеся в литературе публикации [108, 109] свидетельствуют об эффективности примецепия в качестве антиэрозионных материалов уретановых эластомерных покрытий. В настоящей работе сделана попытка исследовать влияние различных факторов — эластичности, прочности, напряжения при удлинении и других, на эрозионный износ полиуретановых покрытий, а также дать оценку износостойкости их в сравнении с другими конструкционными и защитными материалами. [c.161]

    В книге изложены современные методы защиты от коррозии деталей, узлов и оборудования в период изготовления, межоперационного хранения, сборки и испытаний, длительного хранения и монтажа. Рассмотрено влияние атмосферы и технологических факторов при изготовлении, вызывающих коррозию, а также рекомендованы мероприятия по защите от кор-)озии, в том числе при проектировании оборудования, 1риведены технологические процессы нанесения защитных покрытий и консервации. Даны результаты использования различных способов и средств защиты оборудования от коррозии. [c.2]

    Все это, а также отзывы по второму изданию книги, поступившие в связи с широким техническим и научным обсуждением этого учебного пособия, в которых были высказаны пожелания о введении некоторых изменений и необходимости дополнения книги новыми главами, побудило автора переделать некоторые главы книги, сократить менее ценный материал и написать новые главы. Книга дополнена следующими главами глава VI Влияние конструктивных особенностей элементов аппаратов и сооружений на коррозионный процесс глава VII Разрушение металлов при совместном действии коррозионных и механических факторов глава XV Коррозия новых конструкционных металлов и сплавов . Вместо одной главы Пластические массы , помещенной во втором издании, дано пять глав по высокополимерным материалам. Коренной переработке подверглись главы И, III и IV по кинетике процессов электрохимической коррозии и пассивности металлов и глава IX по химической коррозии. Глава XXXI по углеграфитовым и древесным материалам значительно расширена в первой части, учитывая большое значение этих материалов в химическом машиностроении, и сокращена во второй части. Сокращены также глава I, поскольку вопросы строения металлов и растворов подробно рассматриваются в различных учебниках, и глава XVI Металлические защитные покрытия и химические методы обработки , поскольку эти способы защиты в химическом машиностроении неэффективны. [c.4]


Смотреть страницы где упоминается термин Покрытия защитные влияние различных факторов: [c.119]    [c.142]    [c.217]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.117 , c.124 ]




ПОИСК







© 2025 chem21.info Реклама на сайте