Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Половая рекомбинация III

    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]


    Если яйцеклетка-самая крупная клетка организма, то спермий (или сперматозоид) обычно меньше всех других клеток. Он выполняет две основные функции вводит в яйцеклетку гаплоидный набор хромосом для половой рекомбинации и запускает программу развития яйцеклетки. Обладающий компактной, обтекаемой формой сперматозоид снабжен мощным жгутиком, благодаря которому он движется в водной среде (рнс. 14-35). Но, несмотря на все зто, подавляющее большинство этих клеток не выполняет своей миссии из сотен миллионов спермиев, выделяемых самцом, лишь немногим удается оплодотворить яйцеклетку. [c.35]

    Внутривидовое видообразование предполагает участие нескольких факторов, однако во всех случаях непременным условием является прекращение обмена генами между популяциями. В результате каждая субпопуляция становится генетически изолированной. Изменения частоты аллелей и генотипов в отдельных популяциях, обусловленное действием естественного отбора на диапазон фенотипов, создавшихся в результате мутаций и половой рекомбинации, ведет к образованию рас и подвидов. Если генетическая изоляция сохраняется в течение длительного периода времени, а затем подвиды встречаются вновь в той же самой области, то они либо снова скрещиваются, либо скрещивание между ними оказывается невозможным. В случае успешного скрещивания их все еще можно считать принадлежащими к одному виду. Невозможность скрещивания означает, что произошло видообразование, и прежние подвиды следует теперь рассматривать как самостоятельные виды. Полагают, что именно та- [c.333]

    Положение резко изменяется при половой рекомбинации геномов. Теперь становится относительно быстро достижимым сочетание мутаций, резко увеличивающих биологическое совершенство обладателей всего комплекта. Правда, половая рекомбинация обеспечивает как сочетание генов разных особей, так и нарушение уже сложившихся полезных сочетаний. В этом случае для дела эволюции полезно чередование полового и бесполого размножения. При следующем за половой рекомбинацией бесполом размножении возникает множество копий, пусть еще незавершенного, по полезного набора генов. Испытание в ходе борьбы за существование особей, возникших при бесполом размножении, позволяет существенно увеличить концентрацию полезных сочетаний генов (мутаций). Так илн иначе, но и при половой рекомбинации — процессе перемешивания различных геномов—может потребоваться очень большое время, долгий ряд поколений. Все это время носители потенциально полезных мутаций должны сохраняться в системе, быть участниками общего обменного фонда генов. Целостность, сохранение этого обменного фонда на протяжении всего времени перебора сочетаний потенциально полезных мутаций—важное условие возможно быстрого возрастания биологического совершенства соответствующих организмов. Наибольшую опасно сть для сохранности, целостности данного обменного фонда генов представляет его преждевременное разбавление путем половой рекомбинации с представителями других обменных фондов. Поэтому условием ускорения эволюционного совершенствования оказываются изолирующие механизмы, все механизмы, препятствующие размыванию границ данного обменного фонда генов. [c.36]


    В нормальных природных условиях гены и наборы генов претерпевают рекомбинацию в ходе таких биологических процессов, как трансформация бактерий, вирусная трансдукция, конъюгация бактерий и обмен генов при слиянии половых эукариотических клеток. Гены и группы генов могут также перемещаться с одного места на другое как в пределах одной и той же хромосомы, так и между разными хромосомами. Например, белки-антитела, которые вырабатываются клетками крови (иммуноцитами) позвоночных против миллионов самых разных, не содержащихся в организме [c.991]

    Половое размножение свойственно как растениям, так и животным. В последнее время, особенно благодаря работам Ледерберга, получены генетические доказательства возможности оплодотворения и рекомбинации также у бактерий, для которых прежде было известно только бесполое размножение. Недавно половую конъюгацию у бактерий наблюдали при помощи электронного микроскопа (см. стр. 242). [c.124]

    Бактерии размножаются обычным путем бинарного деления. При этом единственная молекула ДНК бактериальной хромосомы удваивается, и в результате дочерние клетки получают по идентичной хромосоме. Однако у некоторых бактерий обнаруживаются зачатки полового размножения. Процессом, перемешивающим бактериальные гены, является при этом генетическая рекомбинация (гл. 15, разд. Ж). [c.39]

    Нельзя, однако, говорить о полном отсутствии полового процесса у несовершенных грибов. У них, так же, как у базидиомицетов или у других аскомицетов, доказано наличие парасексуального процесса. Плазмогамия, кариогамия и мейоз имеют место и у них, но не в определенных участках вегетативного тела и не на определенных стадиях развития. В норме первичный мицелий несовершенных грибов бывает гомокариотическим, т. е. содержит ядра только одного типа. В результате объединения протопластов, содержащих ядра разного типа, возникают гетерокарионы. Введенное в мицелий чужое ядро размножается, и образовавшиеся дочерние ядра распространяются по мицелию. Время от времени происходят кариогамия и мейоз. Таким образом, парасексуаль-ный цикл обеспечивает примерно столь же эффективную рекомбинацию ядерного материала, как и истинный половой процесс. [c.75]

    В принципе при полном генетическом сцеплении все гены любой хромосомы должны передаваться в половые клетки в виде неразделимых блоков, не образуя в процессе мейоза новых генетических комбинаций на хромосомах (рис. 20.6). Однако в больщинстве случаев сцепление является неполным. При мейозе происходит обмен (рекомбинация, кроссовер) между генными сайтами (локусами), и создаются новые комбинации генов (рис. 20.7). Поскольку [c.445]

    У эукариотических организмов генетическая рекомбинация осуществляется при половом слиянии яйцеклетки и сперматозоида появляющиеся в потомстве клетки содержат дочерние хромосомы, состоящие из определенных генов обеих родительских хромосом (рис. 30-14). В этом процессе хромосомы сперматозоида и яйцеклетки расщепляются в гомологичных точках, а затем куски хромосом двух родительских клеток обмениваются своими генами и соединяются с образованием новых комбинаций генов. В результате потомство слившихся клеток обладает комбинацией фенотипических признаков, принадлежавших обоим родителям. Этот природный процесс расщепления, сборки и соединения генов [c.976]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Уже раньще мы сделали заключение, что половое размножение обеспечивает рекомбинацию генов и генотипическую адаптацию. Указывалось также, что существуют различные механизмы, благоприятствующие перекрестному оплодотворению. Наиболее действенно в этом отношении разделение на два пола, которое, за некоторыми исключениями, широко распространено у животных. Среди растений также много раздельнополых видов, хотя у них чаще, чем у животных, встречаются различные случаи гермафродитизма. [c.124]


    СЦЕПЛЕНИЕ. РЕКОМБИНАЦИЯ И ПОЛОВОЕ РАЗМНОЖЕНИЕ [c.239]

    Для сравнения рассмотрим популяцию, первоначально состоящую из диплоидных особей, которые размножаются бесполым способом. Здесь будет отсутствовать отбор, направленный на удаление рецессивных летальных или вредных мутаций, затрагивающих лишь одну из двух копий гена у гетерозиготных особей не может появиться нежизнеспособных гомозиготных потомков, так как нет половой рекомбинации. Поэтому рецессивные вредные мутации будут иа протяжении многих поколений накапливаться в геноме-до тех пор, пока его диплоидность не сменится состоянием, в котором общее количество ДНК остается прежним, но сохраняется лишь одна функционирующая копия каждого из первоначальных необходимых генов. Организм становится функционально гаплоидным . Таким образом, без полового размножения диплоидный вид не будет оставаться диплоидным, тогда как при половом размножении диплоидность будет сохраняться (рис. 14-6). [c.11]

    Ни одна нз биологических систем не функционирует с абсолютной точностью, и особенно трудно достигнуть такой точности в нервной системе, где зто особенно необходимо. Например, у некоторых особей неизбежно окажутся гены, определяющие, скажем, несколько ббльшую величину мышц, а у других-гены, вызывающие небольшое отклонение в размерах мозга или длине конечностей. Так как в результате половой рекомбинации происходит перетасовка различных генов, нет никакой гарантии, что гены, влияющие на размеры и строение одной части тела, будут сочетаться с генами, вызывающими точно скоррелированные изменения других частей. Поэтому нередко будут возникать несоответствия между разными частями нервной системы или между мозгом и органами, которые он иннервирует. Чем сложнее организм и его нервная система, тем больше аероятность неполной согласованности в результате такой независимой изменчивости составных частей. [c.143]

    Частичный перенос хромосомы из мужской клетки приводит к тому, что Р -клетка становится частично диплоидной (мерозигота), т. е. содержащей двойной набор многих генов. В такой частично диплоидной клетке между двумя хромосомами происходит обмен генетической информацией (генетическая рекомбинация) (рис. 15-2). Химические реакции, лежащие в основе этого процесса, имеющего важное значение для всех организмов, размножающихся половым путем, мы рассмотрим в разд. Ж- В конечном счете рекомбинационный процесс приводит к тому, что дочерние клетки, образовавшиеся при последующем делении, содержат только одну хромосому с обычным числом генов. Однако некоторые гены попадают в эту хромосому от каждого из родительских штаммов. Таким образом, может случиться, что клетка Р мутантного штамма, неспособная расти на среде без определенных питательных добавок, получит ген из мужской клетки, который позволит ей расти на минимальной среде. Хотя число таких рекомбинантных бактерий мало, тем не менее их легко можно отобрать из очень большого числа исходна смешанных мутантных бактерий. [c.191]

    Простого факта, что генетический материал упакован в виде обособленных частиц (хромосом), в принципе уже достаточно для того, чтобы обеспечить возможность значительного перераспределения генетической информации между разными индивидуумами при половом размножении. Заметим, однако, что изменениям в пределах самих хромосом это отнюдь не способствует. Перераспределение генетической информации внутри хромосом происходит путем генетической рекомбинации в процессе кроссинговера. Эта р собенцрсть мейоза имеет чрезвы- [c.265]

    Г., контролирующие разные признаки, иногда передаются потомству независимо друг от друга. Это происходит в том случае, если они находятся в разных хромосомах. Когда Г. находятся в одной хромосоме, они обычно передаются потомству вместе (т. наз. сцепление Г.). Это правило может нарушаться из-за кроссинговера (см. Рекомбинация генетическая), когда при образовании половых клеток отцовские и материнские хромосомы разрываются и образовавшиеся концы соединяются крест-накрест. После рекомбинации Г., первоначально находивыгаеся в одной хромосоме, оказываются в разных. Существование кроссинговера между гомологичными хромосомами позволяет определять относительное расположение Г. на хромосоме, т.е. составлять генные карты чем дальше друг от друга [c.517]

    Новая инфо цмация создается в каждом акте полового размножения. Это — случайный выбор, никакими детерминистическими законами природы не предусмотрено, что именно данная пара произведет потомство. Новая особь несет новую информацию — рекомбинацию родительских геномов. [c.307]

    Рекомбинация у эз кариотических клеток была выявлена генетическими методами, а в отдельных случаях и путем наблюдения форм хромосом. Этот процесс происходит при созревании половых клеток, на первой фазе которого две пЪры хромосом, образовавшиеся в результате предшествующей репликации, вместо того чтобы разойтись по двум дочерним клеткам, как это имеет место при обычном клеточном делении — митозе, предварительно объединяются в единую структуру некоторыми гомологичными сегментами. Это создает благоприятные условия для гомологичной рекомбинации, которая у эукариот, в первую очередь у дрозофилы, была открыта задолго до выяснения рекомбинации у бактерий и получила название кроссинговера. Рекомбинация сама по себе не создает новых генов, однако в результате нее возникают новые комбинации признаков, которые могут оказаться весьма существенными как при естественном отборе, так и в селекционных работах. [c.171]

    Цикл полового размножения включает чередование гаплоидных поколений клеток, каждая из которых имеет одиночный набор хромосом, с диплоидными поколениями, где клетки обладают двойным хромосомным набором. Смешивание геномов происходит благодаря слиянию двух гаплоидных клеток, из которых образуется одна диплоидная. В свою очередь новые гаплоидные клетки образуются из диплоидных в результате деления особого типа, называемого мейозом, при котором гены двойного набора заново перераспределяются между одиночными наборами (рис. 14-2). Генетичестя рекомбинация хромосом в процессе мейоза приводит к тому, что каждая клетка нового гаплоидного поколения получает новое сочетание генов, происходящих частично от одной родительской клетки предыдущего гаплоидного поколения и частично от другой. Таким образом, благодаря циклам, включающим гаплоидную фазу, слияние клеток, диплоидную фазу и меноз, распадаются старые комбинации генов и создаются новые. [c.7]

    ОТ отца, а другая-от матери. П )и нормальном митотическом делении материнская и отцовская хромосомы не обмениваются генетическим материалом, и поэтому каждая из дочерних клеток получает от родителей полный ин-такгный набор отцовских генов и такой же набор материнских. В норме обмен генами между материнским и отцовским гомологами происходит только в половых клетках при кроссинговере во время мейоза. Иногда, однако, кроссинговер между гомологами происходит и при делении обычных соматических клеток. Это называют митотической рекомбинацшей. Если материнская и отцовская хромосомы обмениваются идентичными участками, т.е. если клетка по этим участкам гомозиготна, то такой обмен остается незамеченным. Но если обмениваться будут участки, по которым клетка гетерозиготна, то может возникнуть выраженный фенотипический эффект. В результате рекомбинации могут, например, появиться дочерние клетки, имеющие различную пигментацию, и тогда при дальнейшем размножении эти клетки образуют участки ткани разного цвета. Механизм этого иллюстрируют схемы на рис. 15-33, где показано, как после единичного акта митотической рекомбинации на фоне нормальных клеток может появиться двойное пятно, образованное двумя клонами клеток с различными генетическими маркерами. [c.83]

    Рис, 1Ф5. Эта схема показывает, каким образом половое размножение способствует распространению в популяции полезных мутаций. А, В н С-три благоприятные мутации, возникшие в трех различных локусах мутация А обеспечивает наибольшую приспособленность, но при этом лучше всего приспособлены особи, несущие одновременно все три мутации А, В и С. В бесполой популяции мутации А, В и С возникают вначале лишь у отдельных особей, и эти особи конкурируют друг с другом, а также с исходными немутантиыми организмами А побеждает и закрепляется в популяции, тогда как В и С элиминируются. Особи АВ не появляются до тех пор, пока у потомков А не произойдет мутация В, а особи АВС-до тех пор, пока не произойдет мутация С у особи АВ. В популяции с половым размножением мутации X, В и С, как и раньше, возникают независимо у различных особей, но благодаря генетической рекомбинации могут быстро образовываться гаметы АВ, АС и ЛВС. Таким образом, в популяции одновременно распространяются все три благоприятные мутации, и она быстро приобретает генотип АВС. [c.10]

    Таким образом, у диплоидного вида с половым размножением могут возникать новые гены в результате мутаций в добавочных копиях имеющихся генов эти новые гены могут распространиться в популяции благодаря отбору в пользу гетерозигот, причем не будут потеряны и исходные гены и наконец, новые гены могут дополнительно включаться в геном в результате процессов дупликации генов и генетической рекомбинации. Такая последовательность событий возмножна только у диплоидных видов. Обогащение генома у гаплоидного вида связано с большими трудностями. Если в процессе приобретения нового гена вид должен сохранить и старый ген, то ему придется ждать возникновения нужной мутации у одной из очень немногих особей, у которых уже произошла дупликация соответствующего локуса. А поскольку и мутации, и дупликации в определенном локусе происходят очень редко, гаплоидному виду приходится дожидаться совпадения этих событий поистине очень долго (рис. 14-8). Детальные расчеты показывают, что в типичном случае диплоидный организм способен расширять свой геном и добавлять к нему новые гены с новыми функциями в сотни или даже тысячи раз быстрее, чем это происходит у гаплоидного организма. [c.13]

    Теперь можно перейти к детальному описанию клеточных механизмов полового процесса. В последуювдх разделах сначала будет рассмотрен мейоз, в котором осуществляется генетическая рекомбинация и из диплоидных клеток образуются гаплоидные гаметы затем мы обратимся к самим гаметам и, наконец, познакомимся с процессом оплодотворения, при котором гаметы сливаются, образуя новый диплоидный организм. [c.14]

    При половом размножении происходит циклическое чередование диплоидного и гаплоидного состояний диплоидная клетка делится путем мейоза, порождая гаплоидные клетки, а гаплоидные клетки попарно сливаются при оплодотворении и образуют новые диплоидные клетки. Во время этого процесса происходит перемешивание и рекомбинация геномов, в результате чего появляются особи с новыми наборами генов. Высшие растения и окивотные большую часть жизненного цикла проводят в диплоидной фазе, а гаплоидная фаза у них [c.14]

    Другим примером генетической рекомбинации служит конъюгация бактерий. Обычно бактерии размножаются вегетативным путем, с помощью простого роста и деления. Однако у некоторых видов бактерий время от времени происходит половая конъюгация. В процессе такой конъюгации часть одной из цепей (или вся цепь) хромосомы донорной клетки переносится через пиль-длинный соединительный канал-в реципиентную клетку того же вида (рис. 30-13). Донор-ная клетка обозначается как Р или (-I- )-клетка, так как она несет половой фактор Р реципиентная клетка, не содержащая Р-фактора, называется (—)- клеткой. В результате половой конъюгации реципиентная клетка приобретает несколько новых генов, которые встраи- [c.976]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    За последнее десятилетие генетика претерпела быструю эволюцию. Составной частью методов генетики микроорганизмов стали значительно усовершенствованные методы биохимии и биофизики. Генетические исследования физической природы генов были ускорены появлением работы Уотсона и Крика о репликации первичной генетической информации. В свете этих достижений термин ген в настоящее время редко используется без расшифровки. В микробиологической генетике ему, по сути дела, нет адекватного значения. Для обозначения соответствующего понятия у микроорганизмов появились новые термины с более точным значением, например рекон (Бензер [1]). Представление о половом размножении как единственном методе генетической рекомбинации претерпело изменение и включило альтернативные механизмы, например трансформацию, конъюгацию у бактерий, парасексуализм в грибах и др. (Понтекорво [2]). Разрабатываются методы изучения последовательности пар оснований в нуклеиновых кислотах и механизма кодирования, управляющего последовательностью аминокислот в белках приближается решение и многих других фундаментальных проблем генетики. [c.140]

    Таким образом, популяиии самоопыляющихся растительных видов состоят из множества гомозиготных биотипов. У растений с перекрестным опылением, так же как у большинства животных и у человека, положение совершенно иное. Благодаря перекрестному оплодотворению между различными особями происходит непрерывная гибридизация, и так как эти особи генотипически различны, то в популяции постоянно происходит расщепление и рекомбинация генов. Каждая особь в такой популяции гетерозиготна по большому числу генов, и поэтому ее половые клетки имеют чрезвычайно разнообразную генетическую конституцию. При скрещивании с другой, столь же сильно гетерозиготной особью образуется потомство, в котором каждый индивидуум имеет не такой генотип, как его сестры и братья. [c.78]

    Подобные данные ясно показывают, что у бактерий должен происходить какой-то половой процесс, ведущий к объединению и рекомбинации генов разных родительских типов. Вначале рекомбинация была обнаружена только у одного штамма— Es heri hia oli К-12, причем у этого штамма частота [c.241]


Смотреть страницы где упоминается термин Половая рекомбинация III: [c.318]    [c.140]    [c.37]    [c.37]    [c.38]    [c.200]    [c.108]    [c.61]    [c.108]    [c.171]    [c.86]    [c.15]    [c.975]    [c.302]    [c.453]    [c.480]    [c.483]   
Биология Том3 Изд3 (2004) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Рекомбинация



© 2025 chem21.info Реклама на сайте