Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотополимеризация цепная

    Полимеризация может начаться под воздействием различных видов облучения. При УФ облучении происходит фотолиз двойной связи и образование бирадикала, который становится инициатором цепной радикальной полимеризации (фотополимеризация)  [c.158]

    Хлористый винил легко полимеризуется под влиянием света (фотополимеризация), тепла и различных инициаторов (органических и неорганических перекисей). Полимеризация носит цепной, радикальный характер. В технике основное значение приобрела инициированная полимеризация жидкого хлористого винила. [c.234]


    При исследовании цепной реакции фотополимеризации X. С. Багдасарьян также наблюдал, что скорость полимеризации пропорциональна / 2. Нелинейная зависимость между интенсивностью света и скоростью процесса говорит о наличии вторичных реакций. [c.136]

    Процесс цепной полимеризации состоит из трех стадий возбуждения (инициирования) или активации молекул роста цепи и обрыва цепи. Обычно различают два вида цепной полимеризации радикальная (инициированная) и ионная (каталитическая). Инициированные реакции полимеризации заключаются в образовании свободного активного радикала при действии тепла (термическая полимеризация), света (фотополимеризация) или облучения а-, р-и у-частицами (радиационная полимеризация). Наиболее распространенной является полимеризация в присутствии инициатора. В этом случае активация мономера начинается с распада инициатора (I) и образования свободных радикалов (К ), которые взаимодействуют с мономером (А) по схеме  [c.374]

    Важной вехой иа пути понимания процесса полимеризации было установление цепного характера этой реакции. Так, в 1930 г. Тэйлор и Вернон [2] показали, что квантовый выход фотополимеризации винилацетата имеет величину порядка 10 , что непосредственно указывает на цепной характер этой реакции. И. Н. Семенов [3] в своей книге Цепные реакции , вышедшей в 1934 г., рассматривает полимеризацию как пример цепной реакции. [c.9]

    При фотополимеризации это может быть результатом инициирования цепного процесса, а при фотодеструкции и фотохимическом сшивании — изменения молекулярного веса и структуры полимера. Исследования в области фотополимеризации и фотодеструкции полимеров достаточно полно освещены в ряде монографий и обзорных работ. Систематизация же результатов исследований по [c.3]

    Из к и н е т и к и полимеризации [104] можно только тогда сделать вывод о механизме, если температурная зависимость скорости реакции цепной полимеризации, измеряемая скоростью роста полимера, известна настолько точно, что можно вычислить энергию активации и константу действия и затем сравнить эти величины со значениями для реакций, механизм которых известен. Этим путем для вызываемой ультрафиолетовым светом Я >2500 А фотополимеризации газообразного винилацетата при низких давлениях доказан радикально-цепной механизм полимеризации [305]. Однако такого рода доказательства можно дать только в исключительных случаях вследствие трудностей, связанных с необходимыми для этого точными измерениями. [c.555]


    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    ФОТОПОЛИМЕРИЗАЦИЯ, образование макромолекул под действием света, гл. обр. УФ излучения. Осуществляется в газообразной, жидкой или твердой фазе. К Ф. относят все фотохим. процессы получ. полимеров независимо от их механизма — цепного (полимеризационного) или ступенчатого (поликонденсацнонного). В первом случае свет служит только для инициирования р-ции (образования начальных активных центров в результате перевода молекул мономера или инициатора в возбужд. состояние), к-рая далее развивается как обычная ионная или радикальная полимеризация. Во втором случае каждый акт роста цепи требует поглощения кванта света, т. к. в этой р-ции участвуют только электронно-возбужд. молекулы. При ступенчатой Ф. образуются макромолекулы с циклами в осн. цепи. Цепная и ступенчатая Ф. в твердой фазе протекают даже при т-рах, близких к абсолютному нулю. В пром-сти используется гл. обр. цепная Ф., напр, для получ. оптически однородных изделий (оргстекло и др.) и нек-рых стереорегуляр- [c.632]

    П.-особый тип цепных реакции в ней развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Процесс включает неск. осн. стадий, т. наз. элементарных актов инициирование-превращ. небольшой доли молекул мономера в активные центры под действием специально вводимых в-в (инициаторы радикальные и катализаторы полимеризации), излучения высоких энергий (радиационная полимеризация), света (фотополимеризация) или электрич. тока рост цепи-последоват. присоединение молекул мономера (М) к активному центру (М )  [c.637]

    ФОТОПЛАСТЙНКИ, M. Фотографические материалы. ФОТОПЛЁНКИ, M. Фотографические материалы. ФОТОПОЛИМЕРИЗАЦИЯ, образование полимеров под действием света, гл. обр. УФ излучения. Осуществляется в газовой, жидкой и твердой фазах. К Ф. относят все фотохим. процессы получения полимеров независимо от их механизма - цепного (полимеризационного) или ступенчатого (поли-конденсационного). В первом случае свет служит только для инициирования р-ции, к-рая далее развивается как обычная полимеризация. Во втором случае каждый акт роста цепи требует поглощения кванта света. [c.174]

    Штаудингер считал, что активация молекулы мономера приводит к раскрытию двойной связи и что образующийся бирадикал реагирует затем с молекулами мономера, образуя промежуточные продукты рассмотренного выше типа. Работы Штаудингера способствовали появлению многочисленных исследований, в которых полимеризация рассматривалась как радикальный цепной процесс. Однако теоретические концепции в работах Штаудингера излагались всегда в очень общем виде, и первым убедительным примером свободнорадикального механизма полимеризации, по-видимому, можно считать исследованную в 1930 г. X. С. Тэйлором и У. Джонсом [10] полимеризацию этилена, инициированную диэтилртутью. В этом же году и в той же лаборатории Тэйлора было показано [И], что квантовый выход фотополимеризации винилацетата имеет величину порядка 10 , что непосредственно указывает на цепной характер этой реакции. [c.76]


    ФОТОПОЛИМЕРИЗАЦИЯ (photopolymerization, Photopolymerisation, photopolymerisation) — образование полимеров под действием света. К Ф. относят все фотохимич. процессы синтеза полимеров независимо от того, протекают ли они по полимеризационному или поликон-денсационному механизму. В соответствии с этим, различают фотоинициированную цепную полимеризацию (свет необходим для инициирования процесса, к-рый далее раз- вивается как обычная полимеризация) и неценную Ф. (т. е. по существу поликонденсацию, в к-рой каждый акт роста является фотохимич. реакцией). [c.382]

    Основные процессы получения полимеров — полимеризация и поликонденсация [540, 755]. Они происходят по цепному или ступенчатому механизму. Первый аналогичен цепным реакциям, характерным для низкомолекулярных соединений, второй — простым реакциям типа этерификации. Полимеризация часто подчиняется кинетическим закономерностям цепных процессов (для большинства полимеров, описываемых в этой монографии), реакции поликонденсации протекают по ступенчатому механизму. Для цепной полимеризации, которая может быть радикальной и ионной, характерны следующие элементарные стадии инициирование, рост, обрыв и передача цепи. Например, схему фотополимеризации этцлакри- [c.50]

    Поливинилацетат пoлiyчaют радикально-цепной полимеризацией винилацетата в среде мономера и в растворителях, суспензионным и эмульсионным методами. Полимеризацию можно инициировать и светом. Скорость фотополимеризации винилацетата пропорциональна корню квадратному из интенсивности облучения, т. е. при таком способе инициирования рост макрорадикалов прекращается только в результате их взаимодействия между собой. [c.364]


Смотреть страницы где упоминается термин Фотополимеризация цепная: [c.21]    [c.632]    [c.382]    [c.480]    [c.479]    [c.171]   
Химия высокомолекулярных соединений (1950) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Фотополимеризация



© 2025 chem21.info Реклама на сайте