Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биосинтез микробного белка

    Первым из этих важнейших направлений является промышленное производство микробного белка и ферментов этим вопросам посвящено настоящее пособие. Второе, направление связано с биосинтезом физиологически активных веществ, оно составляет предмет следующей, шестой книги. [c.5]

    Современный этап развития промышленной биотехнологии требует создания надежных экспресс-методов количественного изучения свойств живых клеток как продуцента необходимых веществ. В области производства микробного белка появились исследования и рекомендации по так называемому морфометрическому контролю культуры, основанные на стандартизованном анализе фотографий клеток, полученных в поле зрения сканирующего микроскопа, с помощью ЭВМ по соответствующей программе. Хотя этот подход и не нашел пока широкого практического применения, его следует рассматривать как шаг вперед в решении задачи управления. Тем ие менее контроль и управление периодическим биосинтезом метаболитов основан все еще на медленных и малоэффективных методах исследования. Настоятельная необходимость использования в первую очередь именно здесь АСУ ТП заставляет использовать параметры, лишь косвенно характеризующие обстановку в биореакторе, а именно температуру, pH, концентрацию субстрата, кислорода, источников азота, фосфора и т. п., а также титр клеток, содержание основного и побочных метаболитов, спор и токсинов и т. д. Наиболее [c.23]


    Тетрациклины — антибиотики широкого спектра действия. Они активны в отношении грам-отрицательных и грам-положительных бактерий, риккет-сий, некоторых крупных вирусов и простейших. Они устойчивы к действию различного рода гидролаз, к ним медленнее развивается резистентность микроорганизмов. К их недостаткам следует отнести различные побочные эффекты. Механизм антимикробного действия тетрациклинов основан на ингибировании ими биосинтеза белка микробной клетки. [c.304]

    Вопросы, связанные с промышленным производством всех продуктов, дающих биотехнологии источники углерода и энергии для роста микроорганизмов н биосинтеза, в этой главе подробно рассматриваться не будут. Здесь будут кратко изложены основы технологии наиболее важных веществ, в первую очередь субстратов для биосинтеза микробного белка. К ним относятсяУпара-финовые углеводороды нормального строения етанол, этанол, метан как компонент природного газа и углеводы различного происхождения, прежде всего гидролизаты растительного сырья. Белок одноклеточных можно получать с утилизацией некоторых отходов целлюлозно-бумажного производства, химической и нефтехимической промышленности, которые, однако, не применяются в других процессах микробиологического синтеза. [c.33]

    При взаимодействии антибиотика с микробной клеткой он должен проникнуть в клетку и вступить в контакт с соответствующими ферментами, регулирующими те или иные жизненно важные процессы (синтез клеточной стенки, биосинтез белка, функции мембран и т.д.). [c.415]

    Оба эти подхода крайне важны для промышленного производства микробного белка, отметим лишь некоторые возможности, очевидные уже сегодня. Прежде всего, генетические манипуляции с дрожжами и бактериями, применяемые в промышленном биосинтезе белка одноклеточных, могли бы улучшить аминокислотный состав белка, так как они позволяют, в принципе, изменять относительные скорости накопления разных белков клетки и поэтому, в известных пределах, увеличивать внутриклеточный пул особенно дефицитных аминокислот типа лизина, триптофана, треонина и др. Возможно, что при этом можно было бы несколько повысить и общее содержание протеина в биомассе, т. е. поднять выход целевого вещества. [c.136]

    Тетрациклин представляет собой желтые кристаллы с т. пл. 170—175° С он подавляет действие различных микроорганизмов и биосинтез белка в микробных клетках широко применяется для лечения многих инфекционных заболеваний. [c.265]


    В этом уравнении — предел, к которому стремится р, по мере повышения остаточной концентрации лимитирующего рост вещества S. Иерусалимский Н. Д. теоретически доказал правомерность формулы Моно, показав, что рост микробной биомассы может быть описан уравнением простой ферментативной реакции. Объясняется это тем, что скорость таких комплексных реакций, как биосинтез, определяется скоростью отдельных ферментативных реакций, протекающих медленнее остальных и определяющих общую скорость процесса. Н. Д. Иерусалимский исходил из того, что обязательной предпосылкой роста является биосинтез жизненно важных компонентов протоплазмы, в первую очередь, белков и нуклеиновых кислот, составляющих более половины микробной биомассы. [c.35]

    В состав белка микробных клеток входят все 20 аминокислот, биосинтез которых у прототрофных культур осуществляется из углерод-, азот- и серусодержащих компонентов среды. В качестве источников углерода могут быть углеводы, углеводороды и продукты их неполного окисления. [c.16]

    Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии обычно разделяют на две большие группы по признаку целевого продукта — производство биомассы и получение продуктов метаболизма. При таком подходе удачно освещается цель производства, которая в первом случае заключается в получении клеточной массы продуцента, вне зависимости от того, будет ли далее использоваться живая культура (например, сахаромицеты для пищевых целей, споры с токсинами в целях защиты растений) или биомасса нежизнеспособных клеток как источник белка, витаминов и других ценных веществ для кормопроизводства. Ко второй группе относят все процессы, где целевым продуктом становится один или несколько метаболитов, а клетки продуцента не нужны или даже вредны после завершения фазы биосинтеза это, например, получение продуктов брожения, ферментов, аминокислот, антибиотиков и всевозможные виды микробных трансформаций. [c.10]

    По данным ряда специалистов мировой дефицит белка к концу XX в. оценивается в 30—35 млн. т. Основным путем снижения и ликвидации этого дефицита является производство биомассы с помощью микробного синтеза, имеющее следующие преимущества перед другими источниками белковых веществ микроорганизмы обладают высокой скоростью накопления биомассы, которая в 5000—500 раз выше, чем у растений или животных микробные клетки способны накапливать очень большое количество белка (дрожжи — до 60%, бактерии — до 75% по массе) в микробиологическом производстве за счет высокой специфичности микроорганизмов отсутствует многостадийность сам процесс биосинтеза протекает в мягких условиях при температуре 30—45°С, pH 3—6 и давлении 0,1 МПа, он менее трудоемок по сравнению с получением сельскохозяйственной продукции и органическим синтезом белков. [c.73]

    Рассматривается проблема получения белка, этанола, органических кислот, метана и других ценных продуктов на основе микробной трансформации лигноцеллюлозных и целлюлозных отходов сельского хозяйства и промышленности. Приведены данные о составе и свойствах целлюлозы и ряда природных лигноцеллюлозных материалов, способы их предварительной модификации с целью повышения эффективности биоконверсии этих материалов. Рассматриваются механизмы ферментативного расщепления целлюлозы и родственных полисахаридов, а также вопросы биосинтеза и некоторые аспекты применения целлюлолитических ферментов. На основании обобщения и анализа использованных в работе данных делаются выводы о возможности практической реализации процессов биоконверсии. [c.2]

    В настоящее время ни у кого не вызывает сомнений тот факт, что в деле осуществления Продовольственной программы важная роль принадлежит микробному синтезу с использованием дешевых природных ресурсов органического вещества и отходов промышленного и сельскохозяйственного производства. Микроорганизмы растут в сотни раз быстрее, чем самые урожайные сельскохозяйственные культуры, и в тысячи раз быстрее самых продуктивных животных. Если же учесть то обстоятельство, что для их питания пригодны самые разнообразные субстраты, то преимущества использования микроорганизмов для получения белка, этанола, метанола и некоторых других продуктов биосинтеза очевидны. [c.3]

    Может оказаться перспективным применение в качестве продуцентов белковых веществ водородных бактерий, относящихся к хемолитоавтотрофам. Но наиболее перспективными новыми видами сырья для микробного биосинтеза кормового белка на ближайшие годы являются спирты метиловый и этиловый. [c.565]


    Т.-антибиотики ншрокого спектра действия. Они активны в отношении грам1юложит. и грамотрицат. бактерий. Механизм антибактериального действия Т. основан на подавлении ими биосинтеза белка микробной клетки. [c.559]

    В течение нескольких последних десятилетий химики и биохимики поделили сферы интересов в области молекулярных аспектов биологии. Сферой биохимиков стала динамика живой клетки, ее отдельные функции и их контроль. Интересы химиков-органиков сфокусировались на изучении аккумулирующихся в клетках метаболитов первичных метаболитов (углеводов, белков, нуклеиновых кислот, липидов, стероидов) и множестве вторичных метаболитов (алкалоидов, терпенов, фенолов, хннонов и разнообразных микробных антибиотиков). Это разделение сфер интересов не должно заслонять общие цели. Поэтому, хотя в последующих главах и в тексте всей книги основное внимание при обсуждении биосинтеза уделяется темам, представляющим особый интерес для химиков, мы считаем необходимым рассматривать результаты исследований прежде всего исходя из наших знаний о промежуточном метаболизме и двух фундаментальных биосинтетических процессах — фотосинтеза и фиксации азота, являющихся исходным пунктом и основой для последующего анализа путей биосинтеза. [c.396]

    В любом живом организме аминокислоты расходуются прежде всего на биосинтез первичных метаболитов — ферментных и неферментных белков. Следовательно, кроме бдосинтеза аминокислот de поУо,возможен другой njnrb их получения, а именно — из гидролизатов соответствующих белков (триптофан разрушается при кислотном гидролизе), в том числе — из нативной биомассы микробных клеток. [c.445]

    Стрептомицин и его производные, например дигидрострептомицин, обнаруживают широкий спектр антибактериальной активности в отношении большинства грамотрицательных и некоторых грамположительных (включая пенициллиноустойчивые формы) и кислотоустойчивых бактерий. Стрептомицин подавляет биосинтез белка в микробной клетке. Однако бактерии быстро приобретают устойчивость к действию препарата. Стрептомицин применяют главным образом при лечении туберкулеза. [c.26]

    Частично гидрированные и замещенные тетрацены найдены в выделениях одноклеточных грибковых организмов и используются как антибиотики, объединяемые под названием тетрациклины. Важную группу антибиотиков представляют собой тетрациклин и его производные 7-хлортетрациклин (ауреомицин, или биомицин) и 5-окситетрациклин (террамицин). Они обладают высокой антибиотической активностью, широким спектром действия и применяются для лечения многих инфекционных заболеваний. Антибиотические свойства этих соединений обусловлены тем, что они подавляют в микробных клетках биосинтез белка на рибосомах. [c.242]

    Межпиковые работы выдающихся биологов Г. Бойера, С. Коэна, Д. Морра, А. Баева, А. Белозерского, О. Эйвери, Г. Гамова, К. Кораны, Ф. Жакоба, Ж. Моно, Дж. Беквиста, Ю. Овчинникова, А. Спирина, Р. Петрова и других дополнили последовательный ряд важнейших открытий по идентификации генов и ферментов, выделению молекул ДНК из растительных, микробных и животных клеток, расшифровке генетического кода, а также механизмов экспрессии генов и биосинтеза белка у прокариот и эукариот. [c.15]

    В живой микробиальной клетке непрерывно и одновременно протекают два процесса — распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ — метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетфотроф-ных микроорганизмов являются угаеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клеяса использует после истощения основного питания. [c.394]

    Ферменты бактерий. Ферменты распознают соответствующие им метаболиты (субстраты), вступают с ними во взаимодействие и ускоряют химические реакции. Ферменты являются белками, участвуют в процессах анаболизма (синтеза) и катаболизма (распада), т.е. метаболизма. Многие ферменты взаимосвязаны со структурами микробной клетки. Например, в цитоплазматической мембране имеются окислительно-восстановительные ферменты, участвующие в дыхании и делении клетки ферменты, обеспечивающие питание клетки, и др. Окислительно-восстановительные ферменты цитоплазматической мембраны и ее производных обеспечивают энергией интенсивные процессы биосинтеза различных структур, в том числе клеточной стенки. Ферменты, связанные с делением и аутолизом клетки, обнаруживаются в клеточной стенке. Так называемые эндоферменты катализируют метаболизм, проходящий внутри клетки. Экзоферменты выделяются клеткой в окружающую среду, расщепляя макромолекулы питательных субстратов до простых соединений, усваиваемых клеткой в качестве источников энергии, углерода и др. Некоторые экзоферменты (пенициллиназа и др.) инактивируют антибиотики, выполняя защитную функцию. [c.45]


Библиография для Биосинтез микробного белка: [c.205]   
Смотреть страницы где упоминается термин Биосинтез микробного белка: [c.60]    [c.189]    [c.208]    [c.228]    [c.51]    [c.56]   
Производство белковых веществ (1987) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Биосинтез микробного белка основы технологии субстратов

Микробная



© 2024 chem21.info Реклама на сайте