Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агарозный гель, электрофорез

    Ниже описаны некоторые общие методики и реагенты, используемые при электрофорезе нуклеиновых кислот и белков в акриламидном и агарозном гелях. Приведены также работы, из которых взяты основные детали описываемых методик. [c.376]

    Рекомендуется использовать электрофоретический прибор с охлаждением. По окончании электрофореза область разделения исследуемого образца в агарозном геле вырезают в виде узкой продольной полосы, содержащей белковые фракции (фиг. 33), и помещают ее на пластинку агарозного геля с иммунной сывороткой. [c.155]


    На эту пластинку кладут полоску геля с фракциями исследуемого белка и проводят электрофорез. Пластинку укрепляют в приборе так, чтобы миграция белковых фракций происходила под прямым углом к продольной оси наложенной полоски агарозного геля (фиг. 33). Электрофорез продолжается 30—90 мин при градиенте напряжения [c.156]

    Обычная анионообменная хроматография оказалась непригодной для очистки РНК, содержащих более 100—150 нуклеотидных остатков. Поэтому рибосомальные и матричные РНК обычно разделяют с помощью электрофореза в полиакриламидном или агарозном геле. К достоинствам этого метода относится высокая скорость процесса и высокая разрешающая способность по отношению к одноцепочечным молекулам, различающимся по своим размерам. Аффинная хроматография основана на том, что высокая степень специфичности может быть достигнута за счет гибридизации или химических взаимодействий между молекулами РНК, находящимися в растворе, и соответствующими соединениями, ковалентно связанными с твердым носителем. [c.176]

    При гель-электрофорезе РНК в качестве денатурирующего агента обычно используют мочевину. РНК и ее фрагменты, в состав которых входит от 12 до 150 нуклеотидных звеньев, можно разделить в высокопроцентных полиакриламидных гелях, содержащих 7 М мочевину [85], а более длинные РНК (состоящие из 1500—4500 нуклеотидных звеньев)—в низкопроцентных полиакриламидных или агарозных гелях, содержащих 6 М мочевину [86, 87]. [c.179]

    Гель-электрофорез использовали для изучения нуклеотидной последовательности ДНК генома до тех пор, пока не были открыты рестриктазы. К настоящему времени выделены сотни таких ферментов, каждый из которых узнает специфическую нуклеотидную последовательность длиной от 2 до 8 пар оснований и расщепляет двухцепочечную молекулу ДНК лишь в этом участке [108]. Точки расщепления обеих цепей ДНК могут находиться либо на одинаковом расстоянии от одного из концов молекулы (т. е. располагаться строго напротив друг друга), либо быть смещены относительно друг друга на несколько звеньев. В первом случае образуются фрагменты с тупыми концами, содержащие только спаренные нуклеотидные остатки, а во втором — с липкими , которые представляют собой небольшие участки одноцепочечной ДНК. Используя рестриктазы различной специфичности, можно расщепить высокомолекулярную ДНК на отдельные фрагменты, размеры большинства из которых находятся в диапазоне, приемлемом для разделения этих фрагментов с помощью электрофореза в полиакриламидном или агарозном геле [107]. Таким способом были получены уникальные фрагменты ДНК генома, которые затем были встроены в рекомбинантные ДНК-векторы [109]. Этот раздел посвящен разделению таких фрагментов. [c.184]


Рис. 10.9. Разделение клонированных фрагментов ДНК человека с помощ,ью электрофореза в агарозном геле и идентификация фрагментов, содержащих Рис. 10.9. Разделение <a href="/info/1345809">клонированных фрагментов</a> ДНК человека с помощ,ью электрофореза в <a href="/info/199926">агарозном геле</a> и <a href="/info/1894691">идентификация фрагментов</a>, содержащих
    Электрофорез в агарозном геле оказался ценным методом определения конформационного состояния молекул кольцевых [c.195]

    Фрагменты разделяют по размерам с помощью гель-электрофореза в агарозном геле, как это было описано ранее (рис. 25.4). Фрагменты меньшего размера гораздо быстрее продвигаются к концу геля, чем большие фрагменты. [c.259]

    ДНК вьщеляют из кпеток и обрабатывают рестриктазой. Для разделения полученных фрагментов используют электрофорез в агарозном геле при этом фрагменты выстраиваются по размерам, как уже объяснялось в разд. 25.1 и показа- [c.265]

    Разделение фрагментов ДНК осуществляют в носителе, которым является раствор полимера агарозы. Отсюда и название метода. Агарозный гель образует трехмерную полимерную ячеистую структуру. Он электронейтрален и химически инертен по отношению к ДНК, поэтому всегда легко можно выделить (элюировать) необходимый фрагмент ДНК из геля с сохранением биологической активности. Использование геля в качестве среды, где проводится электрофорез, позволило решить проблему разделения фрагментов и затем выделения конкретного фрагмента ДНК (рис. 1.1). [c.27]

Рис. 1.1. Разделение фрагментов ДНК, полученных в результате действия рестриктаз с помощью электрофореза в агарозном геле Рис. 1.1. <a href="/info/1339061">Разделение фрагментов</a> ДНК, полученных в <a href="/info/1302568">результате действия</a> рестриктаз с <a href="/info/219534">помощью электрофореза</a> в агарозном геле
    Электрофорез в агарозном геле [c.47]

    Если взять определенную молекулу ДНК и обработать ее подходящим рестриктирующим ферментом, то в строго определенных местах произойдут разрывы, которые разделят ДНК на ряд отдельных фрагментов. Эти фрагменты можно фракционировать по размеру методом гель-электрофореза. Для этого препарат разрезанной ДНК наносят сверху на агарозный гель. При наложении электрического поля фрагменты начнут перемещаться вниз по гелю со скоростью, зависящей от их длины. Чем короче фрагмент, тем быстрее он движется. (Пройденное расстояние обратно пропорционально логарифму длины фрагмента.) [c.44]

Рис. 3.1. Рестриктирующие ферменты расщепляют ДНК на отдельные фрагменты, которые можно разделить методом электрофореза в агарозном геле. Рис. 3.1. <a href="/info/1868687">Рестриктирующие ферменты расщепляют</a> ДНК на отдельные фрагменты, которые <a href="/info/1520412">можно разделить</a> <a href="/info/73992">методом электрофореза</a> в агарозном геле.
    Для применения всех этих методов нужно иметь в распоряжении полный набор фрагментов, из которых должна быть построена карта. Однако иногда это условие невозможно выполнить. Если несколько специфических сайтов одного фермента находятся слишком близко друг к другу (например, на расстоянии 50 п. н.), образуются мелкие фрагменты, которые нельзя обнаружить при электрофорезе в агарозном геле. Это, конечно, приведет к расхождению при суммировании полученных значений молекулярных масс всех фрагментов. Однако расхождение в молекулярных массах само по себе не обязательно должно настораживать, так как всегда существует некоторое расхождение при сравнении размеров фрагментов. [c.46]

Рис. 9.6. Электрофоретический анализ ре- -стрикционных фрагментов ДНК. ДНК фага X инкубировали с различными указанными на рисунке рестриктазами время, достаточное Для того, чтобы во всех чувствительных сайтах произошло расщепление нуклеотидной последовательности. Образовавшуюся смесь фрагментов ДНК подвергали электрофорезу в агарозном геле. Полосы идентифицировали в ультрафиолетовом свете после окрашивания геля бромистым этидием. Стартовые точки обозначены жирными стрелками. Интактная ДНК фага X представляет собой линейную молекулу длиной около 48 500 н. п. При действии рестриктазы ВдШ возникают фрагменты длиной 22800, Рис. 9.6. <a href="/info/822862">Электрофоретический анализ</a> ре- -стрикционных фрагментов ДНК. ДНК фага X инкубировали с <a href="/info/658136">различными указанными</a> на рисунке рестриктазами время, достаточное Для того, чтобы во всех чувствительных сайтах произошло <a href="/info/1351688">расщепление нуклеотидной последовательности</a>. Образовавшуюся смесь фрагментов ДНК подвергали электрофорезу в <a href="/info/199926">агарозном геле</a>. Полосы идентифицировали в <a href="/info/104607">ультрафиолетовом свете</a> <a href="/info/1383689">после окрашивания геля</a> <a href="/info/560462">бромистым этидием</a>. <a href="/info/1325076">Стартовые точки</a> обозначены жирными стрелками. Интактная ДНК фага X представляет <a href="/info/1795776">собой</a> <a href="/info/301099">линейную молекулу</a> длиной около 48 500 н. п. При <a href="/info/1404310">действии рестриктазы</a> ВдШ возникают фрагменты длиной 22800,
    Часто по завершению цикла экспериментов по секвенированию ДНК случайным подходом и после компьютерной состыковки прочитанных последовательностей оказывается, что субклоны для отдельных участков среди прочих были не секвенированы. Выявление в созданной клонотеке таких субклонов стандартным способом требует много времени и усилий, поэтому был предложен вариант, в котором с помощью агарозного гель-электрофореза в каждой дорожке разделялось одновременно 10 образцов [Hong, 1988]. Причем, как такового, выделения ДНК не проводилось и электрофоретическому разделению подвергались аликвоты супернатанта после выращивания одноцепочечных фагов с добавлением равного объема буфера для нанесения, содержащего 1%-ный додецилсульфат натрия. Метод очень простой и относительно быстрый, но качество разделения, впрочем, оставляет желать лучшего. [c.247]


    Гель-электрофорез проводится в агарозном или полиакриламидном геле. Это исключительно гибкий метод разделения варьируя структуру геля и состав буферного раствора, можно проводить разделение на основе различия в молекулярных массах, изоэлектрических точках и биоспецифическом сродстве. Особенно высокого разрешения достигают при гель-электрофорезе в полиакриламиде [39], так как здесь дополняют друг друга электрофорез и молекулярноч итовой эффект. Сыворотка, например, расщепляется на 20 полос, в то время как при электрофорезе в агарозе появляется лишь 5 полос. [c.351]

    А. Иммуноэлектрофоретический анализ (ИЭА) [41], Антигены вначале разделяют путем электрофореза в агарозном геле, Верхняя часть рисунка демонстрирует классическое расположение ИЭА нижняя часть ИЭА называется тандемной стрелки показывают положение лунок, в которые заливают перед электрофорезом растворы антигенов. После электрофореза в геле параллельно направлению электрофоретической миграции прорезается канавка, которая заполняется иммунной сывороткой. Антитела и антигены диффундируют в гель, встречаются и образуют дуги преципитации, [c.102]

    Для электрофоретического разделения нуклеиновых кислот среднего размера обычно применяют агарозные гели. Агароза — это особо чистая фракция, получаемая из агара или непосредственно из агарообразующих морских водорослей. В 1,0% агарозном геле можно разделять молекулы ДНК размером от 600 до 20 ООО п. н. Для фракционирования более крупных молекул ДНК (миллионы пар оснований), денатурированной ДНК и РНК приходится использовать специальные системы электрофореза. Иногда для решения специальных задач для разделения ДНК применяют полиакриламидные гели. Так, в 20% полиакриламидном геле можно разделить фрагменты ДНК, состоящие всего из шести оснований и различающиеся лишь одним нуклеотидом. [c.54]

    Саузерн-блотгипг (Southern blotting) Обнаружение специфических нуклеотидных последовательностей путем переноса денатурированных молекул ДНК, подвергнутых электрофорезу, с агарозного геля на нитроцеллюлозный или найлоновый фильтр за счет капиллярного эффекта и гибридизации с меченым зондом, комплементарным искомой последовательности. [c.559]

    Основное практическое значение имеет электрофорез в гелях гель-электрофорез). При использовании гелей практически исчезает опасность конвекции, резко уменьшается коэффициент диффузии и размывание зон незначительно. В результате на одном геле длиной около метра можно получить до сотни или даже более зон. Наиболее широко используется электрофорез в сшитых полиакриламидных и агарозных гелях. Агароза является компонентом агар-агара, содержащегося в красных морских водорослях. Она построена из чередующихся остатков В-галак-тозы и 3,6-ангидро-1/-галактозы, связанных попеременно 0 —> 4)- и а(1 3)-связями  [c.242]

    Агарозные гели используются для фракционирования белкоа и нуклеиновых кислот (гель-фильтрация, электрофорез) и их характеристики (иммунодиффузия, иммуиоэлектрофорез). Б агаровых гелях иммобилизуют бактерии и лимфоидные клетки а молекуляр-но-биологических и иммунологических исследованиях. [c.501]

    Реакция встречного иммуноэлектрофореза (РВИЭФ). Эта реакция основана на встречной диффузии в электрическом поле антигенов и антител и появлении внутри прозрачного геля видимого преципитата. В агаровом или агарозном геле делают лунки диаметром 2 — 3 мм, причем расстояние между лунками для сыворотки и АГ должно составлять 5 — 6 мм. Лунки располагают попарно (одна — для АГ, вторая — для сыворотки) или по три (одна — для АГ, вторая — для испытуемой сыворотки, третья — для контрольной сыворотки). Лунки для сыворотки располагают ближе к аноду, а для АГ — к катоду. Реакцию проводят с несколькими разведениями АГ, продолжительность электрофореза — 90 мин. Результаты реакции учитывают сразу же после окончания электрофореза, отмечая количество и локализацию линий преципитации при сравнении их с контрольной тест-системой. [c.69]

    С самого начала применения электрофореза для стабилизации зон использовались гели. В 1946 г. с этой целью был применен силикагель, а 1949 г. — гель агара [30]. Эти гели используются и в настоящее время, особенно в аналитических целях. Расширение области применения гелей при электрофорезе белков связано с работой Смитиса [91], который использовал молекулярно-ситовые свойства геля крахмала. Это гель особенно удобен для аналитических работ (см. рис. 12.28). При проведении препаративных разделений следует учитывать некоторую загрязненность элюата полисахаридами, которые вымываются из матрицы геля. Аналогичное загрязнение элюата наблюдается и при разделении на геле агара и силикагеле, который содержит большое количество неорганических примесей. Наличие ионогенных групп подтверждается четким электроосмотическим потоком. Электроосмос вызывает сдвиг зон в одном направлении, что искажает профиль разделения. В агарозном геле, свойства которого по другим признакам сходны с агаровым гелем, содержание ионогенных групп существенно ниже. [c.298]

    Плоскостной электрофорез имеет те же преимущества, что и плоскостная хроматография, т. е. позволяет на одной элект-рофореграмме сравнивать одновременно несколько образцов. Методом электрофореза можно, как и в двумерной бумажной или тонкослойной хроматографии, разделять вещества в двух направлениях, в частности в буферах с различным значением pH. Возможен и другой вариант, когда для разделения в двух взаимно перпендикулярных направлениях используют различные носители. Например, сначала проводят электрофорез в узкой полоске агарозного геля, в котором подвижность молекул определяется их зарядом, а затем — в пластинке агарозного геля, в котором вещества разделяются в соответствии с размерами их молекул. Способы качественного и количественного анализа электрофореграмм сходны с используемыми в бумажной и тонкослойной хроматографии. Белки можно обнаруживать также с помощью моноспецифических антител (иммунофиксация). [c.29]

    Электрофоретическая подвижность двухцепочечных ДНК в полиакриламидном или агарозном геле пропорциональна логарифму их молекулярной массы [107]. По вышеизложенным причинам это соотношение справедливо лишь в случае фрагментов со сравнительно низкой молекулярной массой. Для электрофореза обычно используют трис-буфер с низкой ионной силой, доведенный до pH 7—8 путем добавления NaH2P04, борной или уксусной кислоты [107]. Выбор геля определяется размерами фрагментов, которые необходимо разделить. Электрофоретическое разделение фрагментов, содержащих менее 400 пар нуклеотидов, проводят в 2—10%-ных полиакриламидных гелях, фрагменты длиной в 400—1000 пар нуклеотидов разделяют в комбинированных полиакриламид-агарозных гелях, а более длинные фрагменты —в 0,5—1,0%-ных агарозных гелях [107]. Соединения, существенно различающиеся по молекулярной массе, можно разделить в градиенте концентрации полиакриламидного геля [106]. [c.184]

    А—электрофореграмма продуктов расщепления ДНК 1-бактериофагов H Gt (t, 3) и Н Оз (2, 4), содержащих встроенные фрагменты гена -глобина человека длиной 15 000 пар оснований, рестриктазами E oRl (1, 2) и Pst 1 (3, 4). Электрофорез проводили в пластинках 0,8%-ного агарозного геля в 40 мМ трис-буфере, содержащем 5 мМ ацетат натрия и 1 мМ ЭДТА и доведенном до pH 7.4 путем добавления уксусной кислоты. Для обнаружения полос гель обрабатывали раствором бромистого этидия (0,5 мкг мл) и фотографировали при УФ-освещении. [c.186]

    В ядрах клеток всех эукариотов ДНК присутствуют в виде ассоциатов с гистоновыми белками. Эти ассоциаты, или хрома-тиновые фибриллы, представляют собой надмолекулярную структуру, повторяющимся элементом которой является частица, называемая нуклеосомой. Каждая нуклеосома состоит из восьми гистонов (по две молекулы гистонов Н2А, Н2В, НЗ и Н4) и включает участок намотанной на этот белковый октамер нити ДНК длиной в 140 нуклеотидных пар. Продолжение этой нити образует перемычку со следующей нуклеосомой. В зависимости от т ого, какому организму или какой ткани этого организма принадлежит данная клетка, перемычка между нуклео-сомами может содержать от О (дрожжи) до 100 (сперма морского ежа) нуклеотидных пар. Стафилококковая нуклеаза расщепляет молекулу ДНК в области перемычек с образованием фрагментов, длина которых кратна длине участка ДНК, входящего в состав нуклеосомы [136]. После отделения от белков эти фрагменты можно разделить с помощью электрофореза в агарозном геле и таким образом обнаружить различия в структуре повторяющегося звена хроматина (рис. 10.13, Л). При обработке хроматина ДНКазой I нуклеосомальная ДНК расщепляется на фрагменты, содержащие в среднем 10,4 нуклеотидных пар (я —целое число) [137]. Эти сравнительно более короткие фрагменты ДНК можно разделить с помощью электрофореза в полиакриламидном геле (рис. 10.13, ). [c.193]

    В — электрофорез плазмиды РВг 322 Е. oU (а) и продукта ее расщепления рестриктазой Ват Н1 (б) в пластинке 0,8%-ного агарозного геля 1, 2 и 3 — соответственно релакси-роеанная кольцевая, линейная и сверхспирализованная формы. (Д. Салливан, неопубликованные результаты.) [c.194]

    Существует три типа электрофоретических систем электрофорез по Тизелиусу (с подвижной границей) зональный электрофорез (например, в среде с капиллярной структурой) стационарный электрофорез (изоэлектрическое фокусирование, изотахофорез). В медицинской и фармацевтической практике чаще применяется зональный электрофорез на фильтровальной бумаге, пленке из ацетатцел-люлозы, агаровом, агарозном, крахмальном или полиакриламидном гелях. Электрофорез белков сыворотки крови ведут в буферной среде с pH 8,6, когда молекулы белка и липопротеинов заряжаются отрицательно и движутся к аноду. После заверщения электрофоретического разделения электрофореграммы фиксируются и окрашиваются. Затем производят визуальную и денситометрическую оценку разделения белков. Для окраски различных белков на электрофоре-граммах используют специальные красители, часть из которых представлена в табл. 5. [c.44]

    Известно, что каждый нуклеотид в ДНК несет фосфатную группу, которая заряжена отрицательно, поэтому фрагменты ДНК различной длины заряжены неодинаково. Эти различия можно использовать для разделения фрагментов ДНК в электрическом поле методом гель-электрофореза (рис. 25.4). Как следует из названия метода, он предполагает использование агарозного (для очень больших фрагментов) или полиакриламидного (для фрагментов меньших размеров) геля. Поскольку ДНК бесцветна, положение того или иного фрагмента в геле после электрофореза выявляют либо с помошью окращивания, либо используя радиоактивно меченную ДНК и проводя радиоавтографию, в ходе которой на гель накладывают фотографическую пленку. Радиоактивное излучение засвечивает пленку в том месте, где расположена ДНК. [c.219]

    Ферменты рестрикции стали эффективным инструментом исследова-ния. Они позволяют превращать молекулы ДНК очень большого размера (10 — 10 н. п.) в набор фрагментов длиной от нескольких сотен до десятков тысяч пар оснований. С помощью метода электрофореза в агарозном геле фрагменты ДНК, различающиеся по размеру, можно легко разделить, а затем исследовать каждый фрагмент отдельно. Метод электрофореза основан на разделении (фрагментов) молекул ДНК, движущихся с различной скоростью в электрическом поле. В растворе ДНК существует в виде аниона, и при помещении раствора ДНК в электрическое поле молекулы будут двигаться к положительному полюсу (катоду). [c.27]


Смотреть страницы где упоминается термин Агарозный гель, электрофорез: [c.133]    [c.158]    [c.344]    [c.243]    [c.140]    [c.243]    [c.80]    [c.411]    [c.164]    [c.246]    [c.182]    [c.185]    [c.45]    [c.48]   
Генная инженерия растений Лабораторное руководство (1991) -- [ c.28 , c.51 , c.53 , c.72 , c.280 , c.280 , c.286 ]

Биофизическая химия Т.3 (1985) -- [ c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте