Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности -перехода в гелии

    КИЙ гелий внезапно перестает кипеть, так как при очень высокой теплопроводности пузырьки не образуются и все испарение идет с поверхности. Наиболее удивительная особенность .-перехода состоит в том, что это явление сопровождается переходом к состоянию полной упорядоченности в веществе, остающемся жидкостью. Из диаграммы s — Т (см. рис. 62) видно, что ниже >.-точки энтропия уменьшается чрезвычайно быстро, НеП имеет такую же высокую упорядоченность, как кристалл твердого гелия. Явления, связанные с .-переходом и определяемые квантовыми эффектами, ведут к появлению ряда аномалий. [c.137]


    Переходы второго порядка были впервые обнаружены при исследовании точки Кюри в железе, особенностей жидкого гелия (пере- [c.263]

    Особенности -перехода в гелии [c.143]

    Операция растворения требует особенной тщательности, так как при неправильно.м ее проведении возмож ен переход геля кремнекислоты в золь и получение вследствие этого неправильных результатов. [c.37]

    При охлаждении до 2,19° К жидкий гелий испытывает фазовое превращение, переходя от гелия I, стабильного выше этой температуры, в гелий II. Последний обладает рядом особенностей, отличающих его от всех других жидкостей, и, в частности, открытой П. Л. Капицей в 1938 г. сверхтекучестью [74]. При охлаждении ниже указанной точки перехода вязкость его уменьшается в 10 раз. Объяснение этого замечательного явления, так же как и других особенностей гелия II, дал Л. Д. Ландау [75]. Результаты его теории можно наглядно иллюстрировать представлением, по которому ниже точки перехода гелий состоит из смеси двух жидкостей нормальной и сверхтекучей, причем при течении они не обмениваются энергией, т. е. образуют два независимых потока, движущихся один относительно другого без трения. При этом нужно подчеркнуть, что в действительности гелий II есть однородная жидкость и описание его, как смеси двух жидкостей, представляет собой только математический прием, облегчающий применение теории, но не отвечающий физической реальности. [c.107]

    СВЯЗИ нужно отметить, что гелий — единственное вещество, которое прн обычных давлениях ни при каком охлаждении не может быть превращено в твердое состояние. Объясняется это сочетанием малой массы атома с наличием в нем замкнутой электронной оболочки. Благодаря последней взаимодействие между атомами в жидкости мало, а из-за малой массы нулевая энергия колебаний атомов в ней велика. Она превосходит энергию-конденсации и препятствует переходу гелия в твердое состояние. Эти же особенности атомов гелия являются причиной того, что в нем квантомеханические эффекты проявляются сильнее, чем в других жидкостях. [c.248]

    Таким образом, даже изменение ионной асимметрии — выход калия, и вход натрия в глиняную клетку — вполне можно считать следствием, а не условием раздражения и возбуждения клетки. Для этого необходимо только, чтобы при тиксотропном разрушении структуры глины изменялось бы ее .родство к калию. И в самом деле, почему бы не считать такой тиксотропный механизм, механизм перехода гель — золь вполне соответствующим эволюционным задачам Почему бы не считать ионную асимметрию лишь следствием структурных особенностей прото-плазматических структур  [c.99]


    Гелий обладает уникальными особенностями. При 101 кПа он не кристаллизуется (для этого необходимо давление, превышающее 2,5 МПа при Г — 1 К, рис. 3.86). Кроме того, при 7 = 2,19 К (при нормальном давлении) ои переходит в низкотемпературную жидкую модификацию Не(П), обладающего поразительными особенностями спокойным кипением, огромной способностью проводить теплоту (в 300 ООО ООО раз больше обычного Не) и отсутствие ем вязкости (сверхтекучестью), Сверхтекучесть Не(И) была [c.486]

    Исследование. зависимости диэлектрической проницаемости от температуры на таких объектах, как смолы, битумы, пеки, асфальты, показало, что кривые е f l) для многих исследуемых образцов имеют характерные точки перегиба [100, 101]. Такой характер зависимости кривых обусловлен, по-видимому, коллоидными особенностями этих веществ и свидетельствует о переходах нри нагревании из геля в золь. [c.396]

    Уникальными свойствами обладает гелий. При 101 кПа он не кристаллизуется (для этого необходимо давление, превышающее 2,5 МПа при 7- I К, рис. 3.61). Кроме того, при 7-2,19 К (при нормальном давлении) он переходит из обычной жидкой модификации Не(1), см. рис. 3.61, в низкотемпературную жидкую модификацию Не(И), обнаруживающую поразительные особенности спокойное кипение, огромную теплопроводность в 300 000 000 раз больше обычного Не(1)1, сверхтекучесть (отсутствие вязкости). Сверхтекучесть Не(11) была открыта П. Л. Капицей (1938 г.) и объяснена на основе квантово-механических представлений Л. Д. Ландау (1941 г.). [c.472]

    У атома гелия в нормальном состоянии нет неспаренного электрона— оба его электрона находятся на орбитали 15. Возбуждение же атома с переходом электронов из состояния с одним главным квантовым числом п на орбиталь с другим главным квантовым числом, особенно для низких их значений (п=1, 2), требует большой затраты энергии. Для атома гелия энергия возбуждения электрона из состояния Ь на орбиталь 25 равна около 1672 кДж/моль. Такие высокие энергии возбуждения в условиях обычных химических реакций не наблюдаются. Поэтому гелий не образует валентно-химических соединений. [c.94]

    Согласно третьему закону термодинамики энтропия жидкой фазы, так же как и твердой, при абсолютном нуле температуры должна обращаться в нуль. В связи с этим приобретает большой интерес вопрос о распределении атомов в жидком гелии, особенно при наиболее низких температурах. Плотность жидкого гелия мала, под давлением насыщенных паров она составляет всего около 0,14 г/мл, что в значительной мере объясняется малой молекулярной массой гелия (заметим, что плотность жидкого водорода примерно в два раза меньше плотности жидкого гелия). Необычна зависимость плотности Не от температуры (рис. 61). Там же представлена температурная зависимость теплоемкости С вдоль линии равновесия жидкость — пар. При температуре 2,173 К и 49,80 10 Па плотность жидкого Не проходит через максимум, после чего функция р = /(Г) резко меняет свое направление, плотность быстро уменьшается. Теплоемкость тоже аномально зависит от температуры. Кривая теплоемкости похожа на греческую букву X. При 2,182 К теплоемкость является разрывной функцией. Здесь в жидком Не происходит фазовый переход второго рода. Температура этого фазового перехода ( Х-точки ) немного снижается при увеличении давления. Жидкую фазу при температурах, соответствующих Х-точкам и ниже, принято называть гелий II . Жидкая фаза при температурах, лежащих выше Х-точек, названа гелий 1 . [c.229]

    В работе [191] отмечено, что эта функция имеет смысл коррелятора плотности мономеров, образующихся при разрыве всех химических связей геля, молекулы которых физически взаимодействуют между собой и с молекулами золя. До момента гелеобразования функция Э " равна нулю, а при р i она переходит в коррелятор (IV.59) полной плотности звеньев. Корреляционная функция (IV.76) имеет особенности как на спинодали р = рсп, так и в гель-точке р = р. В окрестности последней 1x1 = 1 — р/р 1 < 1, но на достаточном удалении от спинодали т <1—р/рсп коррелятор 0 не зависит от конкретного вида потенциала физических взаимодействий и в трехмерном пространстве задается асимптотической формулой [c.279]

    Советские исследователи предложили теорию единого механизма жидкостной хроматографии полимеров на жестких гелях, из которой следует, что изменением параметров взаимодействия в системе полимер — сорбент — растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот [22]. В общем случае в эксклюзионной хроматографии нужно стремиться полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярномассового распределения (ММР) полимеров, могут существенно исказить результаты анализа. [c.42]

    Для кипения гелия на поверхностях из материалов с низкими ко.эффициентами тепловой активности (никель и, особенно, нержавеющая сталь) пузырьковый режим может переходить в смешанный режим пузырькового и пленочного кипенпя, характеризующийся низкими значениями коэффициента теплоотдачи. При смешанном кипении на теплоотдающей поверхности одновременно существует пузырьковое кипение и вкрапленные в него очаги пленочного кипения. Для смешанного режима кипения характерны высокие температурные напоры, значительно превышающие предельные перегревы жидкого гелия (Д7 п[1 0,5К при атмосферном давлении [30]). [c.238]


    Такие агрегаты и ранее рассматривались как микрогели и предполагалось, что стабилизированы они так же, как гели желатины. Для выяснения особенностей перехода спираль — клубок в гелеобразующих системах желатины были проведены исследования при концентрациях желатины больше 2 г/100 мл, т. е. в условиях гелеобразования [92]. На рис. 2 представлены кривые зависимости температурных коэффициентов удельного оптического вращения растворов и гелей желатины от температуры. Видно, что при 36° С и выше температурный коэффициент удельного оптического вращения равен нулю. В этой области существуют лишь молекулы желатины в конформации статистического клубка. При охлан дении до 20° скорость образования спиралей увеличивается, при 17—20° С температурный коэффициент удельного оптического вращения наибольший и постоянный, а затем он уменьшается. По-видимому, это связано с уменьшением подвижности молекул и их сегментов при снижении температуры, что затрудняет образование спиральных конформаций и с тем, что наибольшая доля молекул желатины из конформаций статистического клубка уже перешла в спиральную конформацию. [c.68]

    Фазовый переход гелия Не в сверхтекучее состояние происходит вдоль кривой в плоскости р — Т. На рис. 20 приведена диаграмма состояния Не. Термодинамические эксперименты в гелии являются рекордными по точности. Например, в экспериментах Алерса 187] температура измерялась с точностью до 10 К. Очень важно, что при температурах ниже критической (7 с = 5,2К) из гелия вымерзают все примеси, за исключением изотопа Не . Позтому гелий является еще и на редкость чистым веществом. Сопоставление предсказаний теории с эксперимент тами на гелии является особенно важным. К сожалению, в случае гелия нет поля, играющего ту же роль, что магнитное поле в магнетике, и все известные нам эксперименты дают сведения о критическом индексе теплоемкости а. Разумеется, эти эксперименты дают возможность проверить основные представления о масштабной инвариантности. [c.143]

    Особенности электровосстановления геле-динитроалканов можно п роследить на примере электровосстановления 1,1-динитроэтана [12]. Это соединение в кислом растворе образует полярографическую волну, соответствующую переходу 5—6 электронов. Предложен следующий механизм  [c.148]

    После активации шарики промывают водой для удаления избытка активирующего раствора (главным образом ионов SOI ) и образовавшихся в результате реакции вредных для катализатора соединений к таким соединениям в первую очередь относится натрий. При промывке не только изменяется состав жидкой фазы, в которой распределены частицы геля, но и происходит удаленпе растворимых компонентов с поверхности твердых шариков. Постепенно процесс проникает в глубь шариков, в основном извлекая легко растворимые в воде и адсорбированные примеси (в первую очередь сернокислый натрий). Но возможно также растворение и основных компонентов — окислов кремния и алюминия. Растворимость их, хотя практически и ничтожна, но не равна нулю. Молекулы гидрогеля будут переходить в истинный пли коллоидный раствор прежде всего с поверхности, и таким образом при промывке (особенно длительной) поверхность шариков будет сглаживаться. Промывка катализатора от посторонних растворимых солей начинается еще в процессе актива- [c.60]

    Авторами была исследована возможность применения метода ОГХ для изучения фазовых переходов в нефтяных пеках и особенностей их взаимодействия с органическими растворителями. Объектами исследования были нефтяной асфальтит, изотропный и анизотропный пиролизные пеки с температурой размягчения 140,185 и ЗОСГС, соответственно, и органические растворители - предельные углеводороды, бензол, спирты, альдегиды, кетоны, эфиры и карбоновые кислоты. Исследования проводились на хроматографе ЛХМ - 8 мД (катарометр при токе 100 мкА) при предварительно выбранных оптимальных условиях загрузка колонки - 12 г, зернистость пека - 0,2-0,5 мм, газ-носитель - гелий, продолжительность стабилизационной продувки - 8,64 10 с, скорость потока гелия - 50 mVmhh. [c.268]

    Аналогичные результаты были получены и при изучении поляризационных и вязкостных свойств смесей смол с неполярным трансформаторным маслом [8]. Исследование зависимости диэлектрической проницаемости от температуры на таких объектах, как смолы, битумы, пёки, асфальты, показало, что кривые е=/( ) для многих исследуемых образцов имеют характерные точки перегиба [9, 10]. Такой характер зависимости кривых объясняется, по-видимому, коллоидными особенностями этих веществ и свидетельствует о переходах ири нагревании из геля в золь. [c.184]

    При сопоставлении разных кипящих слоев обнаруживаются некоторые характерные особенности поведения Цэфф практическая независимость от размера частиц кипящего слоя д. и возрастание д,эфф с увеличением их плотности р,. Сравнение значений Иэфф при одинаковом расширении слоев из частиц разной плотности (рис. П1.26) показало, что вязкость Лэфф, т. е. [ опр. примерно пропорциональна ]/ Рт- На следующем рис. П1.27 приведены данные по зависимости Лэфф от г при псевдоожижении различными газами одних и тех же частиц, определенной по падению одного и того же шара = 1,52 см). Изменение кинематической вязкости в 18 раз при переходе от гелия к углекислому газу ке сказалось существенно на значениях ц,фф для одинаковых 8 слоя. [c.163]

    Показаны особенности фазовых переходов и адгезии в сложных высокомолекулярных системах. Изложены результаты экспериментов, проведенных на кафедре технологии полимерных материалов УТИС и в лаборатории новых материалов и методов ИПНХП АН РБ по изучению влияния хаоса компонентного состава на хара1гге-ристики фазовых переходов в многокомпонентных высокомолекулярных системах. Предложена модель адгезии на межфазной границе раствор полимера - субстрат как расширение двумерного поверхностного газа в поле межмолекулярных сил поверхности субстрата. Показана адекватность этой модели для адгезии растворов и гелей полимеров и сложных многокомпонентных адгезивов на металлических и полимерных субстратах. [c.4]

    Таким образом, варьируя химический состав, изменяя химический потенциал катализатора можно попытаться осуществлять переход от раздельного механизма к высококомпенсационному слитному механизму кроме того, возможно предвидение каталитической активности на основе значений энергии связи реагентов с катализатором [19, с. 495]. Это трудный путь, однако определенные успехи в его реализации имеются, особенно в металлкомплексном гомогенном катализе. В этом случае реагенты входят в координационную сферу иона металла (т. е. становятся дополнительными лигандами), благодаря чему существенно облегчаются их взаимная ориентация, поляризация реагента в поле центрального иона металла и лигандов, электронные переходы в комплексе наконец, такое комплексообразование легко контролировать, варьируя природу исходных лигандов и центрального иона металла. Отметим, что в последнее время возникла и успешно реализуется идея ге-терогенизации катализа металлкомплексными соединениями, закрепленными (иммобилизованными) на полимерных гелях при этом остается возможность перехода к слитному механизму, а также удается использовать в качестве катализаторов соединения, нерастворимые в реакционной среде (основное преимущество классического гетерогенного катализа). [c.99]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Замечательной особенностью фазового перехода второго рода в жидком Не является отсутствие изменений структуры жидкости, т. е. изменений распределения атомов гелия в пространстве. Этот факт, отмеченный в ранних рентгенографических исследованиях Кеезома и других авторов, был подтвержден нейтронографическими измерениями Д. Харста и Д. Хеншоу [61]. Они изучили рассеяние медленных нейтронов (средняя дебройлевская длина волны равна 0,104 нм) жидким Не в интервале температур от 1,65 до 5,04 К, т. е. от температур, лежащих ниже Х-точки, до температур, близких к критической точке. Как известно, при заданной температуре частицы не могут быть локализованы в области пространства, имеющей размеры порядка средней длины волны де-Бройля. Средняя дебройлевская длина определяется уравнением [c.229]

    Работа галиевого детектора основывается на эффекте Пеннинга. В камере находится источник р-излучения. Электроны атома гелия (газа-носителя) в результате столкновения с р-частицами переходят на более высокий энергетический уровень. Энергия возбуждения больше энергии ионизации молекул примеси, поэтому при столкновении возбуждаемых атомов гелия с этими молекулами происходит их ионизация. Величина ионизационного тока характеризует количество примесей. Важной особенностью гелиевого детектора, является то, что он позволяет определять такие примеси постоянных газов, как азот, кислород, водород и т. п. Чувствительность гелиевого детектора достигает объемной концентрации 10" %. [c.402]

    Влияние уменьшения радиуса Э сказывается в изменении свойств гидроксидов при переходе в подгруппах V, VI и VII групп периодической системы снизу вверх. Например, у Nb +(69 пм) еще преобладает ориентационная часть поляризации, и его гидроксид имеет характер геля с большим числом присоединенных оксидом молекул воды и лишь весьма слабыми кислотными свойствами. Напротив, у Р + (34 пм) основное значение имеет уже деформационная часть поляризации, и его гидроксид (Н3РО4) характеризуется небольшим числом химически связанных молекул воды и отчетливо выраженными кислотными свойствами. Аналогично обстоит дело и в подгруппах с 18-электронными ионами повышение заряда и уменьшение радиуса Э сопровождаются уменьшением числа присоединяемых оксидом молекул воды и увеличением силы соответствующей кислоты. Особенно интересен резкий скачок между теллуром и селеном в то время как селеновая кислота имеет состав H2Se04 и по силе похожа на серную, теллуровая отвечает формуле НбТеОе и является кислотой очень слабой. [c.431]

    Переход Не-1 в Не-П через /.-линию происходит без выделения ил поглощения теплоты, т. е. в данном случае имеет место фазовый переход второго рода. Характерной особенностью такого перехода является разрыв первой производной энтальпии по температуре. Это означает, что в некоторой области температур зависимость удельной теплоемкости гелия при постоянном давлении от температуры имеет экстремальный характер, т. е. Ср- -оо (рис. 3.2). Температуру при которой возникает акомалия, называют Я-точкой. [c.223]

    Благородные газы (класс У). В кристаллическом состоянии изучены все эти элементы, кроме радона. Во всех агрегатных состояниях они моноатомны (подробнее см. табл. 29.]). Особенность гелия заключается в том, что в твердое состояние оп переходит только под давлением не ниже 25 атм. Преобладание структур с КПУ ие соответствует результатам расчетов энергий решеток, согласно которым более иредночтительной должна быть ГПУ. [c.440]

    Несмотря на наличие сетки, гели полимеров представляют собой типичные двухкомпонентные системы, и их фазовые диаграммы а priori не должны сильно отличаться от обычных диаграмм полимер—-растворитель, но должны содержать особенности, характеризующие образование сетки. Такая диаграмма приведена на рис. IV. 9. Одно из характерных отличий этой диаграммы от ранее рассмотренных—наличие линии перехода (который, повторяем, с большой вероятностью может быть фазовым) золь — гель. В плане молекулярной физики даже важнее, что обычная температура Т заменена собственной , или эффективной (как называет ее Де Женн) температурой Гэфф, или Гэкв. [c.128]

    Вопрос о тепловом эффекте гелеобразования желатины оказался особенно дискуссионным в связи с трудностью измерения небольших тепловых эффектов в процессе структурообразования. Нейман, Николаев и сотр. [98—103] рассматривали переход золь — гель в желатине как процесс, аналогичный переходу стекло — жидкость, и подтверждали отсутствие фазового перехода при гелеобразовании опытами, где не наблюдалось теплового эффекта и изменения объема при образовании структуры геля. С другой стороны, в работах Лоттермозера [104] и Липатова с сотр. [60, 61, 105, 106] было показано, что процесс застудневания подобен кристаллизации и сопровождается тепловым эффектом. [c.72]


Смотреть страницы где упоминается термин Особенности -перехода в гелии: [c.274]    [c.187]    [c.210]    [c.80]    [c.391]    [c.191]    [c.126]    [c.288]    [c.504]    [c.144]    [c.43]    [c.129]    [c.210]    [c.235]   
Смотреть главы в:

Флуктуационная теория фазовых переходов Изд.2 -> Особенности -перехода в гелии




ПОИСК





Смотрите так же термины и статьи:

Гелий переход



© 2025 chem21.info Реклама на сайте