Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофоретические методы обычный электрофорез

    ЭЛЕКТРОФОРЕТИЧЕСКИЕ МЕТОДЫ ОБЫЧНЫЙ ЭЛЕКТРОФОРЕЗ [c.213]

    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]


    Молекулы полиэлектролита могуг иметь заряд, который в пределах туннеля не скомпенсирован зарядом противоионов, если радиус туннеля меньше дебаевско-го радиуса экранирования Гд. В таком случае при действии электрического поля макромолекулы полиэлектролита приобретут направленное движение к противоположно заряженному электроду. Это движение, как и движение коллоидных частиц, называется электрофорезом. Электрофорез макромолекул полиэлектролита внутри каналов неподвижной полимерной сетки (геля) называется гель-электрофорезом и является важнейшим методом разделения полиэлектролитов на фракции по их молекулярным массам. Он используется для выделения нужных фракций белков, при медицинской диагностике, идентификации личности по составу ДНК и т. д. Возможности гель-электрофореза основаны на том, что электрофоретическая подвижность макромолекул зависит от их размера, т. е. от молярной массы, контурной длины или числа элементарных звеньев в цепи. Это принципиально отличает гель-электрофорез от обычного электрофореза, поскольку скорость последнего не зависит существенным образом от размера частиц или размера К заряженных клубков (при К гд) в разбавленном растворе. Причины различия в том, что макромолекулы двигаются по извилистым туннелям в матрице геля и поэтому результирующая движущая сила электрофореза действует только на концы молекулярной цепи, тогда как сила сопротивления — на всю цепь. Поэтому чем длиннее цепь, тем меньше ее подвижность. [c.744]

    Хроматографический и электрофоретический методы анализа дают возможность разделить сложные смеси, анализ которых обычными методами затруднен. Контролируют процесс по исчезновению исходных веществ или по накоплению продуктов реакции. Сочетание хроматографии и электрофореза с инструментальными методами анализа (колориметрия, спектрофотометрия, полярография и др.) позволяет определить количественное содержание того или иного вещества в продуктах реакции. [c.275]

    В табл. 12.3 приведен рекомендуемый состав электродного электролита и электролита-носителя для разделения растворимых веществ и быстро осаждающихся частиц. Электропроводность электролита-носителя в электрофоретической ячейке обычно лежит в пределах 1 10 —2,2-10 Ом- -см , только систе ма фенол — уксусная кислота — вода имеет существенно (на порядок) более низкую электропроводность. Метод непрерывного электрофореза чаще всего используется для разделения био- [c.288]

    Электрофорез применяется главным образом при разделении белков 145, 46]. Различные макромолекулы в зависимости от их размера и заряда движутся в электрическом поле с разными скоростями. Распределение белков в электрофоретической ячейке обычно контролируют оптическими методами. Для препаративных целей фракции белков при электрофорезе собирают в различных отделениях ячейки. [c.164]


    Электролит можно стабилизировать в вертикальной колонке путем создания градиента его плотности в направлении от верхнего конца колонки к нижнему, однако обычно неподвижность электролита обеспечивается в результате его абсорбции различными природными или синтетическими полимерами. В соответствии с природой носителя различают методы электрофореза на бумаге, мембранах из ацетилцеллюлозы, в гелях агара или крахмала, полиакриламидном геле и т. п. Электрофоретические методы можно также классифицировать по способу разделения или по типу применяемой аппаратуры (например, колоночный и тонкослойный электрофорез). [c.28]

    НОСТЬ, то напряженность поля изменялась бы на границе скачком и, кроме того, изменялась бы во времени при перемещении границы. Такая неоднородность поля и зависимость его напряженности от времени, обычно не проявляющаяся или проявляющаяся в очень малой степени при электрофорезе, служат существенным препятствием для использования метода подвижной границы при ионофорезе. В тех случаях, когда этот метод может применяться к коллоидным системам, он оказывается очень выигрышным, так как позволяет не только измерить электрофоретическую подвижность, но и разделить путем электрофореза компоненты с разной подвижностью, определить их число и идентифицировать каждый из них. Все эти преимущества привели, с одной стороны, к появлению тщательно разработанного Тизелиусом (1930 г.) метода подвижной границы, а с другой — к широкому применению электрофореза на бумаге и в других средах. [c.156]

    Электрофорез в первом направлении проводят обычным способом, а затем полученную электрофореграмму используют без фиксации и окрашивания в качестве стартовой зоны для электрофореза во втором направлении, перпендикулярном первому. Если оба этапа электрофореза осуществляют в идентичных условиях, то скорость миграции белков в обоих направлениях одинакова и зоны разделенных молекул располагаются по диагонали. Очевидно, что такие системы улучшают разделение лишь постольку, поскольку оно зависит от удлинения пути миграции разделяемых белков. Чтобы повысить разрешение в значительной степени, необходимо на втором этапе изменить по крайней мере один из электрофоретических параметров. В настоящей главе приводится краткое описание некоторых методов двухмерного электрофореза. Несколько дополнительных вариантов обсуждаются в главах, посвященных разделению определенных классов белков, в частности белков жидкостей тела, рибосомных и мембранных белков. [c.227]

    Олигонуклеотиды можно разделять путем электрофореза в гелях, содержащих мочевину, при pH 3,5 [296, 1074, 1075]. В этих условиях на электрофоретическую подвижность влияет как длина цепи олигонуклеотида, так и его нуклеотидный состав. Сочетание этого метода с обычным электрофорезом улучшает разделение полинуклеотидов со сравнительно небольшими молекулярными массами. [c.379]

    Наиболее полное разделение смеси белков на индивидуальные компоненты достигается с помощью электрофоретических методов. Как уже обсуждалось в разд. 5.2, проведение препаративного электрофореза, несмотря на то что он обладает значительными теоретическими преимуществами, сопряжено с большими трудностями. Поэтому он используется не часто. В аналитическом же варианте электрофорез — это один из наиболее широко применяемых методов исследования. Действительно, чтобы охарактеризовать очищенные препараты белков, их теперь почти обязательно подвергают электрофоретическому анализу. Для проведения аналитического электрофореза в гелях требуется всего 5—25 мкг белка это обычно не слишком значительная часть полученного препарата. До того как были предложены гелевые системы, электрофоретический анализ проводили в аппарате Тизелиуса методом движущейся границы. Хотя для этого приходилось расходовать десятки миллиграммов белка, разделения очень сходных белков не достигалось и анализ каждого образца требовал больших усилий и внимания. Затем был разработан аналитический электрофорез на бумаге и других целлюлозных материалах, используемых в качестве носителей, что исключило два из указанных выше недостатков метода Тизелиуса количество необходимого для анализа белка значительно сократилось и проводить электрофорез стало намного легче, так как для этого метода требуется только простое оборудование. Однако разрешение осталось примерно таким же, как н прежде, даже при использовании обладающих хорошими качествами современных ацетатцеллюлозных пленок это объясняется тем, что разделение компонентов смеси происходит в соответствии только с приблизительной величиной отношения заряд/размер и многие белки движутся вместе в виде одной зоны (ср. с разд. 5.2). [c.316]

    Это четвертый электрофоретический метод, который также широко используется в настоящее время. Он сходен с гель-электрофорезом в присутствии ДСН в том отношении, что белки в данном случае также разделяются только в соответствии с их размерами, а не по величине зарядов 182]. Концентрация акриламида изменяется по длине пластинки от самого высокого значения (обычно около 30%) в нижней ее части до всего лишь 3% в верхней. Буфер выбирается с высоким значением pH, так что в большинстве своем белки мигрируют в геле к аноду (вниз). Электрофорез длится до тех пор, пока каждый белок не достигнет такого участка в геле, где из-за слишком малых размеров пор он уже не сможет двигаться дальше. Например, небольшие белки могут дойти до участка, содержащего 25% акриламида, а крупные останутся вблизи старта (верхняя часть геля). Как и в системе с ДСН, при электрофорезе в градиентном геле можно определить размеры молекул, если прокалибровать гель с помощью смеси стандартных белков. Однако в данном случае эти размеры будут относиться к нативным белкам, а не к их субъединицам. Система электрофореза в градиентном геле сходна со следующим, пятым методом — изоэлектрическим фокусированием процесс продолжается до тех пор, пока не прекратится перемещение всех белков и пока не завершится фокусирование , или концентрирование, диффузных белковых зон, в результате чего будет достигнута очень высокая степень разрешения. [c.323]


    Определение однородности индивидуального белка. Такое определение часто бывает крайне необходимо, но является сложной задачей. До недавнего времени однородность электрофоретического поведения белка нри фронтальном электрофорезе при различных значениях pH считалась наиболее надежным критерием. Разрешающая способность метода велика в некоторых случаях присутствие компонент с мало отличающимися подвижностями проявляется в расширении границы в процессе движения. Характерным отличием такого расширения от расширения, вызванного диффузией, является то, что при изменении направления движения (переключении тока) граница, наоборот, сужается. Такие измерения проводят обычно при малых напряженностях поля и вблизи изоэлектрической точки, чтобы уменьшить возмущающие эффекты электроосмоса, конвекции и градиентов проводимости. Существующие теории позволяют количественно определить степень неоднородности (распределение подвижностей) по скорости расширения границы. Подобная неоднородность была обнаружена для многих белков, в частности для -глобулина человека. [c.64]

    Одно из серьезных ограничений гель-электрофореза как метода выделения специфических фрагментов ДНК заключается в том, что молекулы, имеющие примерно одинаковую массу, но различную нуклеотидную последовательность, обладают, как правило, одинаковой электрофоретической подвижностью. Один из возможных подходов к решению этой проблемы основан на использовании предложенного в работе Фишера и Лермана [115] метода двумерного гель-электрофореза фрагментов ДНК. Сначала смесь фрагментов ДНК разделяют в соответствии с их размерами с помощью обычного гель-электрофореза, а затем в перпендикулярном направлении проводят электрофорез в 4%-ном полиакриламидном геле в градиенте концентрации формамида (от 4 до 30%) и мочевины (от 0,7 до 5,25 М). Разделение проводят при повышенной температуре. В этой методике использован эффект резкого уменьшения электрофоретической подвижности в результате денатурации или плавления части нативной молекулы ДНК. В ходе электрофореза во втором направлении фрагменты ДНК подвергаются воздействию все более жестких денатурирующих условий, и плавление части молекулы двухцепочечной ДНК сопровождается скачкообразным изменением ее подвижности. Связь между подвижностью фрагментов ДНК и их нуклеотидной последовательностью носит сложный характер и до сих пор окончательно не выяснена [115], [c.185]

    Составы для эмалирования методом электрофореза. Метод электрофоретического нанесения покрытий, достаточно щироко используемый в промышленности, начинают применять и для изготовления эмалированных проводов. Его можно успещно использовать для изготовления медных, алюминиевых и других видов проводов. Метод потребовал разработки новых электроизоляционных материалов. Как правило, это ма- териалы на основе водорастворимых полимеров анионного типа с карбоксильными группами, нейтрализованными веществами основного характера (обычно аминами). Часто в указанных целях применяют также составы на основе эпоксидных смол. Ниже приведены составы двух (в % масс.) типовых композиций на основе эпоксидной и акриловой смол [8], применяемых для получения эмалированных проводов методом электрофореза  [c.118]

    Эмалирование методом электрофореза. Принципиальная схема процесса электрофоретического эмалирования показана на рис. 11.10. Проволока поступает через устройство для ее предварительной очистки в узел нанесения 7. Обычно проволока служит анодом. При выходе проволоки из узла нанесения с нее удаляется скупочный слой специальным устройством (на рисунке не показано), затем она поступает в печь 10 на термообработку. На этой стадии покрытие состоит приблизительно на 70—90% из полимера, остальное — вода. На качество получаемого покрытия в значительной степени оказывают влияние побочные процессы, проходящие в узле нанесения параллельно с осаждением полимера. Прежде [c.139]

    При фронтальном электрофорезе небольшой объем раствора, содержащего разделяемые. компоненты, помещают в трубку с раствором электролита. Под влиянием приложенного поля различные компоненты двигаются к электродам с различной скоростью и разделяются на зоны. Однако после отключения электрофоретической ячейки все зоны начинают смешиваться за счет свободной диффузии. Следовательно, положение разделяемых частиц в ячейке следует оценивать в процессе их миграции. Положение различных зон обычно оценивают при помощи сложной оптической системы, которая фиксирует изменение показателя преломления на границе частей раствора, имеющих различный состав (эффект Шлирена). Для проведения таких измерений требуется дорогостоящее оборудование необходим также строгий контроль экспериментальных условий. В связи с этим большинство электрофоретических измерений в настоящее время проводят методом зонного электрофореза. [c.465]

    Изоэлектрическое значение pH водного раствора полиамфолита, которое не зависит от его концентрации, обычно определяется экспериментальными методами, такими, как электрофорез, основанный на измерении в электрическом поле скорости перемещения частиц 1< = иЕ и — электрофоретическая подвижность, зависящая от заряда, размеров и формы макроиона, от характера его взаимодействия с окружающими низкомолекулярными ионами и т. д., а Е—напряженность поля). При этом, применяя в качестве растворителя буферные растворы, находят значение pH, когда и = ь1Е = 0, что отвечает изоэлектрической точке. [c.577]

    Приготовление пробы. Обычно препаративный электрофорез в полиакриламидном геле не используют в качестве одного из начальных этапов в очистке белков и нуклеиновых кислот. Для предварительного грубого фракционирования компонентов омесей применяют методы хроматографии, высаливания или осаждения. Чтобы провести электрофоретическое разделение, пробу необходимо сконцентрировать до 5 мл для однородной системы и до 10—20 мл для неоднородной. От избытка солей можно избавиться при помощи диализа или гель-фильтрации. Концентрация солей в исследуемом растворе должна быть такой же, как в буфере концентрирующего геля. Если же этот гель не попользуется, то пробу диализуют против буфера разделяющего геля, разведенного в 5 раз. Медленное вхождение пробы в гель во время электрофореза свидетельствует о слишком высокой концентрации солей. Любой осадок, присутствующий в пробе, следует удалять центрифугированием или фильтрованием через миллипоровый фильтр, так как он может закупорить разделяющий гель. [c.117]

    Самым быстрым методом обесцвечивания фона является электрофоретическое удаление несвязанного красителя. В одном из его вариантов молекулы красителя перемещаются в том же направлении, в котором ранее двигались макромолекулы в процессе их разделения. Такое продольное обесцвечивание [281, 1034] проводят следующим образом. Окрашенные цилиндрические гели помещают в стеклянные трубки, внутренний диаметр которых несколько больше, чем диаметр самих гелей. Свободное пространство между гелем и стенкой трубки заполняют свежим гелеобразующим раствором. После его застывания трубки вставляют в обычный аппарат для диск-электрофореза и проводят электрофорез до тех пор, пока фон не станет светлым. Аналогичные результаты удается получить и без заключения окрашенного столбика в новый гель. Достаточно просто вставить его в стеклянную трубку, у которой дно затянуто диализной мембраной или закрыто пробкой из геля, а пространство между [c.188]

    Разработанный Лерманом и Фишером метод электрофоретического разделения близких последовательностей ДНК основан на использовании различий в температуре плавления, обусловленных нуклеотидными заменами [27, 28]. Они исходят из того факта, что последовательность оснований влияет на Гт области плавления и что конформация фрагмента ДНК обусловливает его подвижность в геле под действием электрического поля. Принцип метода — электрофорез ДНК в акриламидном геле фиксированной концентрации с линейно возрастающим к нижней части геля градиентом концентрации веществ, денатурирующих ДНК обычно мочевины или формамида (рис. 3, ). Электрофорезная камера нагревается до температуры примерно 60°С. [c.129]

    В то время как обычный электрофорез белков в тонком слое сефадекса, по-видимому, не представляет особого интереса, сочетание тонкослойной гель-фильтрации с последующим электрофорезом существенно расширяет возможности метода, поскольку наряду с более высоким разрешением здесь удается провести электрофоретическую идентификацию разделяемых компонентов. Методика двумерного фракционирования белков была разработана Иоханссоном и Римо [49] и подробно изложена в работе Хансона и сотр. [14]. Согласно этой методике, первой стадией разделения является гель-фильтрация в слое сефадекса (0-200 или 0-100) толщиной 0,5 мм на пластинках размером 30-30 см. Затем в перпендикулярном направлении в течение 3—4 ч ведут электрофорез при градиенте напряжения 10 В/см. В качестве электролита используют 0,05 М вероналовый буфер с pH 8,6. При электрофорезе пластинку необходимо охлаждать. Относительно простой и удобный прибор показан на рис. 5. [c.269]

    Ригетти и Дрисдейл [103] исследовали возможность разделения нуклеотидов методом изоэлектрической фокусировки на полиамиде. Катон и Гольдштейн [104] провели электрофоретическое разделение РНК на геле полиакриламида с линейным градиентом от 2,5 до 12 % На одном и том же геле можно разделить с хорошим разрешением все РНК от 4S до 28S. Джеппезен [105] использовал линейные градиенты от 3,5 до 7,5 % и от 2,5 до 7,5 % для разделения фрагментов ДНК. Полученные полосы были более четкими, чем при обычном электрофорезе на слоях геля. [c.136]

    В некоторых случаях, например когда в результате длительной очистки удается получить лишь очень малые количества материала ИЛИ при необходимости исследовать компоненты отдельных клеток, приходится прибегать к микроварианту электрофоретического разделения белков и нуклеиновых кислот. В то же время микроанализ в полиакриламидном геле сам по себе обладает рядом преимуществ. Так, более короткое время, затрачиваемое на проведение электрофореза, а также на окрашивание и обесцвечивание гелей, делает применение микроанализа целесообразньгм даже тогда, когда материала вполне достаточно для макроварианта. Микрометодика при наличии определенного опыта едва ли намного сложнее обычного диск-электрофореза, хотя требует такого специального оборудования, как микропипетки, микроманипулятор, лупа и микроденситометр. Читатели, интересующиеся деталями этого метода, могут обратиться к монографии Нейхоффа [915], в которой поми мо электрофореза освещены и другие виды работ с микроколичествами материала (гомогенизация, диализ, фотометрия, центрифугирование в капиллярах и т. д.). [c.107]

    Существует несколько методов выявления криптических различий между белками, не обнаруживаемых посредством обычного электрофореза. Один из этих методов, получтший название последовательного электрофореза, состоит в электрофоретической разгонке одних и тех же образцов в различных условиях, например с использованием различных буферов или различных концентраций геля (рис. 22.12). При другом методе образцы ткани или ферменты подвергаются действию высокой температуры или некоторых других денатурирующих агентов, например обрабатываются мочевиной. В результате один из двух электрофорети-чески неразличимых белков может денатурировать, а второй-остаться [c.97]

    Белки играют центральную роль в процессах жизнедеятельности клеток (примером служат ферменты) и в формировании клеточных структур. Анализ содержания в крови определенных белков и ферментов широко используется в диагностических целях. В частности, при заболеваниях печени диагностическое обследование непременно включает электрофоретическое определение относительного содержания альбуминов и глобулинов в плазме крови. Арализ содержания в плазме липопротеинов и иммуноглобулинов с помощью электрофореза и других методов обычно используется при диагностике специфических типов гиперлипопротеинемии и иммунных нарушений. Моча человека в норме не содержит белков поэтому обнаружение в моче даже небольших количеств белка (протеинурия) с помощью соответствующих лабораторных анализов служит важным показателем заболевания почек, в частности различных форм нефритов. [c.42]

    Этот метод количественного двумерного, или, как его чаще называют, перекрестного иммунозлектрофореза является комбинацией рассмотренных выше методов [ larke, Freeman, 1967]. Сначала в первом направлении смесь белков-антигенов разделяют обычным электрофорезом в агарозе (или ПААГ). Затем следует электрофоретическая миграция разделившихся антигенов в перпендикулярном (втором) направлении. Миграция идет в геле агарозы, смешанной с полифункциональной антисывороткой против исходной смеси антигенов. Каждый белок-антиген во втором направлении мигрирует независимо от других и образует зоны преципитации, подобные ракетам Лорелла , но более широкие у основания и напоминающие обычные хроматографические пики. Эта форма пиков обусловлена тем, что миграция начинается не из резко очерченной лунки, заполненной одинаковым по всему ее объему раствором антигена, а из более или менее размытой белковой зоны, образовавшейся в результате электрофореза в первом направлении. [c.144]

    ДНК, подвергают одновременному электрофорезу на параллельных дорожках одной пластины геля. Сканируя каждую дорожку, расщифэовывают всю последовательность. Используя специальные электрофоретические методы, можно разделить цепи размером от 1 до 300 или более нуютеотидных остатков. Молекулы, длина которых превыщает несколько сотен нуклеотидов, фрагментируют (обычно с помощью рестиктирующих эндонуклеаз или путем субклонирования) и затем определяют нуклеотидную последовательность каждого фрагмента. [c.321]

    Высокоэффективным методом разделения является сочетание электрофореза на бумаге с обычной хроматографией. При этом сначала через влажную бумагу, на которую нанесена смесь, пропускают ток высокого напряжения, а затем смесь хроматографируют с помощью подходящего растворителя в направлении, перпендикулярном направлению электрофореза. В результате достигается разделение первоначальной смеси в двух измерениях. Применение такого метода к продуктам ферментативного расщепления белков позволяет получить двухмерную картину, которую называют пептидной картой. Каждый белок дает характерную для него при каждом конкретном способе расщепления картину. Локализацию отдельных компонентов во многих случаях определяют с помощью специфических красителей. При определении аминокислот и пептидов в качестве такого красителя используют, например, нингидрин. Если производится элюция адсорбированных компонентов, то удобнее всего устанавливать их присутствие в элюате спектрофотометрически. Вероятно, наиболее тонким методом разделения белков следует считать иммуноэлектрофорез, при котором эффект достигается за счет использования различий в двух свойствах электрофоретической подвижности и иммунологической специфичности. [c.220]

    Электрофорез дисперсий, полученных методом гетеростабилизации, существенно отличается от электрофореза обычных устойчивых многокомпонентных дисперсий. В последних в области слабых полей частицы движутся изолированно друг от друга, причем скорость движения определяется их зарядом. Так как у различных частиц заряд может быть различным, то возможно электрофоретическое фракционирование. С повышением напряженности поля, когда становится заметным влияние поляризации частиц и их двойных слоев, образуются агрегаты, которые и осаждаются на электродах [12]. [c.65]

    Электрофорез и электромиграцию можно использовать для разделения и идентификации микроколичеств материалов. Широкое использование этих методов, нанример в анализе аминокислот, белков, алкалоидов, красителей и их полупродуктов, сахаров и полисахаридов, хорошо известно. Применение этих методов в неорганическом анализе в некоторых случаях может иметь преимущество по сравнению с обычными методами. В этой связи может быть перспективным применение органических растворителей. Так, при электрофоретическом разделении в метанол — ацетонных смесях подвижность ионов резко отличается от подвижности в водных растворах, и Зг и Ва легко можно разделить, так же как отделить Zn от N1, Со и Мн [224]. [c.315]

    При применении этого метода наносят очень небольшие количества концентрированного раствора исследуемого препарата на старт в виде узкой полосы. В результате электрофореза (может быть приложена весьма высокая разность потенциалов, поскольку в геле подавляются конвекционные токи) смесь будет разделяться на ряд зон, что позволяет получить более высокое разрешение, чем при работе по методу свободной границы. Более того, можно варьировать средний размер пор и распределение пор по размерам для некоторых поддерживаюш,их сред (крахмал, агар, полиакриламид) таким образом, что действие одного из факторов, влияюш их на электрофоретическую подвижность, а именно гидродинамического сопротивления, будет столь велико, что часть молекул будет практически неподвижной [30]. Электрофоретические подвижности в гелях или на бумаге нельзя непосредственно сравнивать с электрофоретическими подвижностями, измеренными методом свободной границы, кроме тех случаев, когда рассматриваемые молекулы малы по сравнению с размерами пор в поддерживающей среде. Компактные белки с молекулярным весом вплоть до 50 ООО легко диффундируют в 5%-ном полиакриламидном геле, и даже с веществами большего молекулярного веса можно получить хорошие результаты. Бумагу или гелевый блок нужно окрасить, чтобы показать положение различных компонентов можно также сделать перенос на подходящим образом вырезанный кусок фильтровальной бумаги, хотя эта методика часто малочувствительна. Обычные красители, применяемые для обнаружения белков (нигрозин, амидовый черный), дают удовлетворительные результаты для многих гликонротеинов, но некоторые эпителиальные вещества, которые могут представлять собой по существу углеводы (до 90%), окрашиваются довольно плохо. Было найдено, что для кислых гликонротеинов лучше применять толуидиновый голубой [32] или муцикармин [33], а алциановый голубой окрашивает как кислые, так и нейтральные гликопротеины [34]. Наиболее общей методикой окрашивания является, по опыту автора, методика Райдона и Смита [35] (хлорирование и обработка смесью крахмала и иодистого калия), но она неприменима на полиакриламидных гелях. [c.47]

    Теоретические выводы, полученные для электрофореза с подвижной границей, применимы также и для зонального электрофореза в свободной среде. Локализацию зон в электрофоретической трубке выявляют путем ее сканирования в ультрафИхО-летовом свете (рис. 7). Так как количество вносимого в трубку материала не превышает 0,4 мг, описанный вариант электрофореза является микрометодом, однако в пределах этого количества его можно использовать и для препаративных целей. Данный метод целесообразно применять в тех случаях, когда необходимо провести электрофоретический анализ в отсутствие носителей, а количество исследуемого материала недостаточно для метода подвижной границы, для которого обычно требуется около 10 мл по крайней мере 0,5%-ного раствора образца, т. е. 50 мг вещества. [c.22]


Смотреть страницы где упоминается термин Электрофоретические методы обычный электрофорез: [c.328]    [c.490]    [c.155]    [c.331]    [c.332]    [c.182]    [c.350]    [c.171]    [c.281]    [c.80]    [c.42]    [c.42]    [c.259]    [c.178]   
Смотреть главы в:

Методы очистки белков -> Электрофоретические методы обычный электрофорез




ПОИСК





Смотрите так же термины и статьи:

Методы электрофоретические

Обычный метод Гуи

Электрофорез

Электрофоретические



© 2025 chem21.info Реклама на сайте