Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органеллы клетки репликация

    Что происходит во время митоза с митохондриями Они, как и хлоропласты в растительных клетках, делятся. Следовательно, на опреде- ленных стадиях клеточного цикла в этих органеллах происходит репликация ДНК- По крайней мере в ряде случаев деление митохондрий так связано с клеточным делением, что среднее число митохондрий в расчете на дочерние клетки остается строго постоянным. Аналогичное яв- ление наблюдается и в клетках низших организмов, содержащих водо- [c.39]


    Так как биологические машины действительно заслуживают названия машин, настолько тонко и сложно они организованы, то речь, следовательно, идет о самопроизвольном образовании надмолекулярных механизмов, построенных так, что и в каждой их надмолекулярной части нет молекулярного хаоса. Порядок можно обнаружить и в чередовании аминокислотных остатков в белковых молекулах, и в расположении этих молекул в органеллах клетки, и в правильном размещении самих клеток. Порядок царствует и во временной последовательности включения тех или иных ферментных процессов, и в строгом соответствии строения реагирующих молекул, и в передаче наследственных признаков при репликации клетки и т. п. Попытаемся понять, каким образом, в силу какого закона в открытых системах наряду с естественной хаотизацией части среды и диссипацией энергии возникает сам собой динамический механизм, поражающий совершенством своей организации  [c.75]

    Клетки эукариот богаты различными органеллами. Прежде всего это клеточное ядро, в котором происходят все процессы с участием ядерной ДНК, входящей в состав хроматина, в первую очередь процессы репликации, репарации и транскрипции. Даже в пределах ядра имеется распределение процессов между отдельными его частями. Наиболее четко это выражено в случае синтеза рибосомных РНК и формирования рибосом. Участки хроматина, содержащие гены рибосомных РНК, находятся в виде петель хроматина в определенной области ядра, называемой ядрышком. Здесь происходит их транскрипция с помощью РНК-полимеразы I и первые фазы формирования рибосом. Рибосомные белки, необходимые для сборки рибосом, поступают из цитоплазмы, в которой сосредоточено их производство. [c.432]

    В эукариотической клетке ядро служит основным, но не единственным местам хранения наследственной информации. Небольшая в количественном отношении, но функционально очень важная часть клеточного генома находится в митохондриях и в хлоропластах (у фотосинтезирующих организмов). ДНК органелл определяет некоторые (но отнюдь не все) свойства соответствующих органелл. Кроме того, органеллы обоих типов содержат собственные специфические механизмы транскрипции и трансляции. Таким образом, репликация эукариотического генома так же, как транскрипция и трансляция, происходит в двух или трех различных местах в ядре и цитоплазме, в митохондриях и в хлоропластах. Механизмы репликации, транскрипции и трансляции в органеллах несколько отличаются от соответствующих ядерных механизмов. Поэтому свойства каждой из этих двух систем следует рассмотреть по отдельности. [c.48]


    Подобно всем прочим эукариотическим клеткам, клетки высших растений содержат окруженное оболочкой ядро, эндоплазматический ретикулум, диктиосомы и митохондрии. Рибосомы встречаются в них как в свободном виде — в цитоплазме, так и прикрепленными к эндоплазматическому ретикулуму кроме того, рибосомы обнаруживаются в некоторых клеточных органеллах. Репликация ДНК, ДНК-зависимый синтез РНК и РНК-за-висимый синтез белка протекают в растительных клетках так же, как и в других клетках. Многие растительные белки обладают каталитической активностью, т. е. являются ферментами другие белки выступают как важные структурные компоненты клетки. [c.76]

    В большинстве клеток митохондрии делятся на протяжении всей интерфазы таким образом, каждая отдельная митохондрия делится независимо от остальных и от всей клетки. Точно так же репликация ДНК органеллы происходит не только в период синтеза ядерной ДНК (S-фаза), но в другие фазы клеточного цикла. Хотя, по-видимому, индивидуальные молекулы ДНК реплицируются случайным образом (так что в данном клеточном цикле некоторые могут удвоиться несколько раз, а другие-ни разу), общее число молекул ДНК органелл за каждый клеточный цикл удваивается, поддерживая постоянство количества этой ДНК в клетке. [c.55]

    В чем заключается разница между ними Если говорить в самых общих чертах, эукариоты имеют высокоразвитые хромосомы, которые после репликации делятся в ходе процесса, известного как митоз, который требует особого митотического аппарата. Хромосомы прокариот намного проще, и у них отсутствуют молекулы для создания митотического веретена. Эукариоты имеют в своей цитоплазме множество особых компонентов, включая сложные мембранные системы (которые обычно отсутствуют у прокариот) и особые маленькие органеллы, такие как митохондрии. У них есть своя собственная ДНК и свой собственный аппарат для синтеза белка, и широко распространена точка зрения, что они произошли от не паразитирующего прокариота, который проник в клетку и, в конечном итоге, выродился настолько, что мог существовать только в симбиозе с клеткой-хозяином. Митохондрию обычно называют электростанцией клетки , поскольку она включает молекулярный аппарат для эффективного сжигания пищи с использованием молекулярного кислорода. Каждая из наших собственных клеток насчитывает сотни, если не тысячи, таких митохондрий. [c.101]

    А. Неправильно. Органеллы, в которых происходит превращение энергии, делятся на протяжении всей интерфазы, причем каждая из них делится независимо от остальных и от всей клетки. Точно так же репликация ДНК органеллы происходит не только в S-фазе, но и продолжается в течение всего клеточного цикла. Однако процесс регулируется таким образом, что общее число молекул ДНК в органеллах удваивается за каждый клеточный цикл. [c.356]

    Деление клетки включает репликацию всех клеточных органелл, из которых наиболее вал<ной и наиболее изученной органеллой является ядро. Последовательные деления ядра, включающие образование хромосом и процесс митоза, чередуются с периодами, когда ядро, по-видимому, находится в состоянии покоя, называемого интерфазой. [c.14]

    Удвоение многих компонентов клетки не требует точного контроля. Если в клетке имеется много молекул или органелл определенного типа, то достаточно того, чтобы число их приблизительно удвоилось за один цикл и они затем примерно поровну распределились между двумя дочерними клетками. Однако существует по крайней мере одно очевидное исключение в случае ДНК такое удвоение и распределение должно быть совершенно точным, а для этого нужен специальный механизм. Поэтому при рассмотрении клеточного цикла иногда удобно бывает различать хромосомный цикл и параллельный ему цитоплазматический цикл. В хромосомном цикле репликация ядерной ДНК (синтез ДНК) чередуется с митозом, в котором разделяются реплицированные копии генома. В цитоплазматическом цикле рост клетки, при котором удваиваются в числе другие клеточные компоненты, чередуется с цитокинезом-делением всей клетки на две. [c.394]

    Каждый из нас легко отличит растение от зверя или птицы. Более того, обычно нетрудно определить, какому организму - растительному или животному - принадлежит отдельная клетка, хотя иногда эта задача ставит в тупик. При внимательном исследовании клетки - ее цитоплазмы, органелл и, наконец, отдельных химических компонентов на первый план начинают выступать уже не различия, а черты сходства между двумя царствами живой природы. Лишь с помощью весьма тонких методов можно отличить митохондрии, ядра, рибосомы или составные части цитоскелета растительных клеток от соответствующих органелл клеток животных. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, окислительное фосфорилирование в митохондриях или конструкция клеточных мембран, а в более специализированных функциях клеток и тканей. [c.382]


    ДНК, не влияя при этом на репликацию ДНК в ядре. Этот эффект сходен с описанным выше действием этидиумбромида на митохондриальную ДНК- Вместе с тем клетки hlamydomonas, обработанные эти-диумбромидом, способны в дальнейшем восстанавливать содержание ДНК в хлоропластах. При интерпретации этих данных было высказана предположение о существовании исходных копий хлоропластной ДНК в специально защищенных участках. При такой интерпретации необходимо учитывать также данные, свидетельствующие о том, что, хотя репликация ДНК в ядре и в других органеллах происходит в разные периоды клеточного цикла, соотношение между содержанием ДНК в ядре и органеллах поддерживается на постоянном уровне. Должен, по-видимому, существовать какой-то регуляторный механизм, обусловливающий сопряжение процессов репликации ДНК в ядре, митохондриях и хлоропластах [184]. [c.271]

    Все типы существующих клеток делят на два основных класса прокариотические и эукариотические. Наиболее замечательная особенность последних заключается в наличии специальной внутриьслеточной структуры — ядра, которое содержит преобладающую часть ДНК и, следовательно, наследственную информацию. Ядро отдедено от внутреннего содержания клетки — цитоплазмы — ядерной мембраной. Кроме ДНК ядро содержит ряд белков, в первую очередь тех, которые участвуют в репликации и транскрипции, а также необходимы для деления клеток. В ядре эукариотических клеток ДНК существует в форме специальных органелл — хромосом. Эти органеллы можно увидеть в световом микроскопе на определенной стадии деления клетки. [c.23]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Каждый из нас легко отличит растение от зверя или птицы. Обычно нетрудно даже решить, какому организму-растительному или животному-принадлежит отдельная клетка, хотя здесь могут быть и проблематичные случаи. Но по мере более глубокого проникновения внутрь клетки, при исследовании ее цитоплазмы, органелл и, наконец, индивидуальных химических компонентов на первый план начинают выступать уже Не различия, а черты сходства между двумя царствами живой природы. Лишь с помошью весьма тонких методов можно отличить растительные митохондрии, ядра и рибосомы от соответствующих животных органелл, а многие компоненты растительных и животных клеток, такие, например, как микротрубочки, практически неразличимы. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, процессы фосфорилирования в митохондриях нли конструкция клеточных мембран,-скорее оиа связана с более спе-циажзированкыми функциями клеток и тканей Большая часть различий между обоими царствами возникла в ходе эволюционной дивергенции, для которой отправными точками послужили два фундаментальных события приобретение способности связывать углекислоту в процессе фотосинтеза (см. гл. 9) и появление жесткой клеточной стенки у предков современных растений. Отдаленные последствия второго из указанных событий и будут предметом обсуждения в этой главе. [c.160]

    Включения и запасные вещества. Прокариоты характеризуются сравнительно простой внутриклеточной организацией и не содержат автономных органелл, хотя многие бактерии имеют включения. Среди них в первую очередь следует отметить различного рода мембранные пузырьки, образованные в результате инвагинаций ЦПМ. Общей структурой, встречающейся как у грамположительных, так и у грамотрицательных организмов, является мезосома (см. рис. 14). Это инвагинация ЦПМ в форме везикул, трубочек или ламелл. Точные функции ее до настоящего времени неясны. Считается, что она может играть роль в делении клетки, образуя септу, а затем и поперечную перегородку, а также служить местом прикрепления микробной хромосомы, участвуя в репликации и последующем расхождении дочерних клеток. Мезосо-мы могут также принимать участие в процессах секреции. Однако некоторые исследователи считают, что мезосома — это артефакт, возникающий при фиксации клеток для электронной микроскопии. [c.33]

    Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цито-плазматическбй мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала — сигнал для удвоения числа органелл. В септальных мезосо-мах идет построение перегородки, делящей клетку пополам. [c.13]

    Один из важных метаболических путей, меняющих свои свойства в злокачественных клетках, связан с такими органеллами, как митохондрии, обеспечивающими энергетику клеток. Транскрипция, трансляция, репликация и репарация митохондриального генома зависят от ядерного генома, но пока не до конца ясно, как эти два генома интегрированы друг с другом. Изучение механизмов межгеномного взаимодействия может стать полезным для понимания интегральной картины процессов злокачественного перерождения клеток. [c.168]

    Во время деления клетки происходит репликация различных органелл, в том числе пластид и митохондрий. Простейшим типом пластиды является пропластида, из которой развиваются все типы пластид, включая хлоропласты. Пластиды представляют собой полуавторюмные органеллы, способные к удвоению путем деления или почкования. В клетках высших растений может содержаться от нескольких до большого числа пластид, и клетки различных типов значительно отличаются друг от друга по содержанию в них пластид. Число пластид в клетках какого-либо одного типа обычно остается приблизительно постоянным, и это наводит на мысль, что репликация пластид происходит одновременно с делением клетки. Однако распределение пластид материнской клетки между дочерними происходит, по-видимому, Случайным образом. [c.15]

    В клетках ВНК и EF почти все гликопротеины, обнаруживаемые на поверхности клетки, иммобилизованы в скоплениях в местах почкования вируса, т. е. свободных гликопротеинов почти нет [41]. Это послужило основой для гипотезы о том, что на конечных этапах движения гликопротеинов к поверхности клетки нуклеокапсид связывается с ними на внутренних везикулах, где происходит внутреннее почкование. У флавивирусов внутренние везикулы, видимо, служат основным местом сборки и почкования [49]1 интактные, покрытые мембраной вирусы секретируются затем из этих внутренних органелл. Но механизм почкования флавивирусов в некоторой степени отличается от рассмотренного выше, поскольку, как предполагают, один из структурных белков флавивирусов VI образует внутренний матрикс, выстилающий липидный бислой. Сборка тогавирусов в клетках членистоногих также несколько отличается от таковой в клетках позвоночных. В зараженных тогавиру-сами клетках членистоногих наблюдается некоторая везикулярная компартментализация областей, где происходит репликация вируса. В этих клетках не наблюдается поверхностного [c.358]


Смотреть страницы где упоминается термин Органеллы клетки репликация: [c.23]    [c.486]    [c.492]    [c.30]    [c.100]    [c.187]    [c.129]    [c.492]   
Биология развития (1979) -- [ c.69 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Органеллы



© 2025 chem21.info Реклама на сайте