Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Матричная РНК транспорт

    Биологический синтез белка представляет собой сложный, многофазный или многоступенчатый процесс. Помимо РНК в синтезе белков принимают участие многочисленные ферменты. На первой ступени активируются аминокислоты, соединяющиеся потом в пептидные цепочки. Вторая ступень — транспорт активированных аминокислот к рибосомам. Третья ступень представляет собой упорядочение и сочетание инициированных аминокислот и расположение их в необходимой последовательности на матричной РНК с последующим замыканием пептидных связей. Четвертая ступень — формирование из линейной молекулы объемной структуры, свойственной данному белку. Повышение реакционной способности, активация аминокислот увеличивает возможности взаимодействия их друг с другом осуществляется этот процесс при взаимодействии аминокислот с аденозинтрифосфорной кислотой (АТФ). При этом происходит передача энергии одной макроэргической связи АТФ на аминокислоту, переходящую на более высокий энергетический уровень. Реакция активации аминокислот протекает с участием фермента аминоацил-РНК-синтетазы. Для активации различных аминокислот необходимы разные ферменты — синтетазы. Аминокислотная последовательность при синтезе осуществляется кодонами (фрагментами цепи ДНК). [c.105]


    К аналогичному, если не более жесткому, выводу пришли авторы работы [29 ], исследовавшие процесс коллоидного транспорта в единичных трещинах на базе более полной математической модели (учитывающей возможность сорбции загрязнителя на коллоидных частицах как по линейной, так и по нелинейной схеме (5,36), а также кинетический фактор этого процесса). Ими показана исключительная значимость данного процесса для сред с повышенной матричной пористостью, причем подчеркивается важность коллоидного транспорта загрязняющих компонентов в диапазоне низких значений их концентраций при хорошо выраженной кинетике сорбции/десорбции. Расчеты выполнялись при достаточно [c.336]

    Многие ионы металлов необходимы клеткам живых организмов. Это Na, К, Mg, Са, Мп, Fe, Со, Си, Мо, Zn. Они составляют 3% массы человеческого тела. Na(I), К(1) и Са(П) особенно важны как участники так называемого ионного насоса , который сопровождается активным транспортом метаболитов и энергетическими процессами. Другие металлы, такие, как Zn(II) и Со(И), обнаружены в различных металлоферментах, где они координируются с аминокислотами и ускоряют реакции, происходящие в активном центре [214]. Они выступают как сверхкислотные катализаторы, оказывающие прямое или матричное действие. В то же время ионы Fe(II) и u(II) предпочтительно связываются с простетическими группами порфиринового типа и участвуют во многих системах электронного переноса. [c.342]

    Белки-рецепторы могут служить лигандами для связывания гормонов п других низкомолекулярных эффекторов, транспортные белкп плазмы и белки-переносчики клеточных мембран — для связывания и очистки своих низкомолекулярных партнеров. Белки-регуляторы и участники процессов матричного синтеза, используемые в качестве лигандов, позволяют решать задачи по вычленению регуляторных участков нуклеиновых матриц и выявлению других компонентов синтезирующих систем. То же самое относится к системам выработки и транспорта энергии. [c.362]

    ПОЛИМЕР-ПОЛИМЕРНЫЕ КОМПЛЕКСЫ (интерполимерные комплексы, поликомплексы), содержат цепи, состоящие из комплементарных макромолекул устойчивые мах-ромол. соединения. Св-ва качественно отличны от св-в исходных полимеров. Так, из р-римых в воде полимеров образуются поликомплексы (П.), нерастворимые в реакц. среде. Получают П. смешением р-ров комплементарных макромолекул и матричным синтезом. Известны П., образованные химически комплементарными сетчатыми и линейными макромолекулами. Такие П. могут быть получены как матричным синтезом, так и путем химически активир. транспорта линейных макромолекул в заранее синтезир. сетчатые полимеры. Схема образования П. из химически комплементарных макромолекул представлена ннже (а и -упорядоченная и неупорядоченная структуры соотв.)  [c.14]


    В процессе укладки синтезированной полипептидной цепи, получившем название фолдинга —формирование нативной пространственной структуры, в клетках происходит отбор из множества стерически возможных состояний одной-единственной стабильной и биологически активной конформации, определяемой, вероятнее всего, первичной структурой. Описан ряд наследственных заболеваний человека, развитие которых связывают с нарушением вследствие мутаций процесса фолдинга (пигментозы, фиброзы и др.). Поэтому в настоящее время пристальное внимание исследователей приковано к выяснению зависимости между аминокислотной последовательностью синтезированной в клетке полипептидной цепи (первичная структура) и формированием пространственной трехмерной структуры, обеспечивающей белковой молекуле ее нативные свойства. Имеется немало экспериментальных доказательств, что этот процесс не является автоматическим, как предполагалось ранее, и, вероятнее всего, регулируется и контролируется также внутриклеточными молекулярными механизмами, детали которых пока полностью не раскрыты. Из клеток выделено несколько классов белков, названных шаперонами, или белками теплового шока, которые располагаются между М-концевым сигнальным пептидом и матричным белком. Предполагается, что основными функциями шаперонов являются способность предотвращать образование из полипептидной цепи неспецифических (хаотичных) беспорядочных клубков, или агрегатов белков, и обеспечение доставки (транспорта) их к субклеточным мишеням, создавая условия для завершения свертывания белковой молекулы. Эти результаты наводят на мысль о возможности существования второй половины генетического кода , определяя тем самым повышенный интерес [c.67]

    РНК ТОЛЬКО С помощью молекулы-переносчика. Для этого служат транспортные РНК, которые находятся в рибосомах и имеют относительную молекулярную массу порядка 25 ООО. Молекулы транспортной РНК вследствие внутримолекулярного спаривания оснований имеют форму клеверного листа (рис. 3.4.2). На З -конце такого листа находятся неспаренные основания — последовательность цитозин-цитозин-аденин, на 5 -конце одно неспаренное основание, в основном гуанин. Связывание а-аминокислоты с транспортной РНК осуществляется на З -конце за счет карбоксильной группы аминокислоты. Три другие йеспаренные специфические основания транспортной РНК образуют триплет (антикодон), комплементарный кодону матричной РНК. После прикрепления транспортной РНК к информационной РНК (за счет взаимодействия кодон-антикодон) протекает перенос а-аминокислоты, связанной с транспорт ной РНК на растущую нолипептидную цепь. Эта цепь связана через транспортную РНК с рибосомой и остается там, пока соответствующий [c.667]

    Эффекты сильного взаимодействия с матрицей могут проявляться и Ифать больщую роль еще в одном применении наносистемы — создании нанокластеров и матричной наносистемы, которые выступают в качестве носителя различного рода медицинских препаратов в организмах. Наносистема на основе активированного угля с нанокластерами металлов и оксидов металлов в мезопорах может служить эффективным переносчиком при направленном транспорте лекарств. Если включить магнитные кластеры в поры наносистемы, то, воздействуя магнитным полем, можно добиться направленного транспорта лекарственных молекул и белков, при одновременном включении в поры магнитных кластеров и лекарств. [c.451]

    На молекулярном уровне цитокинин в комплексе со специфическим белковым рецептором усиливает активность РНК-полимеразы и матричную активность хроматина (рис. 2.9) при этом увеличиваются количество полирибосом и синтез белков, в том числе некоторых ферментов, в частности нитратредукта-зы. Имеются данные о действии цитокинина на транспорт К+, Н+ и Са"+. [c.43]

    Благодаря участию в деятельности мембранного аппарата клетки реализуются такие важнейшие биологические функции липидов, как регуляция деятельности ряда гормонов и активности ферментов (сейчас известно несколько сотен липидзависимых ферментов), влияние на процессы транспорта метаболитов и макромолекул, контроль реакций биологического окисления и энергетического обмена, связь с репликацией ДНК и ее матричной активностью, компартментализация обменных процессов в клетке вплоть до формирования мембранных машин (хлоропластов, митохондрий), участие в межклеточных взаимодействиях (особенно в эмбрио- и онтогенезе), обеспечение молекулярной памяти и пиктографического механизма записи информации. Перечисленные функции липидов характеризуют как неканонические. За выяснение некоторых из них большой группе советских ученых (Е. М. Крепе, Л. Д. Бергельсон, Р. П. Евстигнеева и др.) в 1985 г. присуждена Государственная премия. [c.372]

    Наконец, теми же авторами [30 ] показано, что в случае стохастически неоднородной трещиноватой среды (представленной системой взаимопересекающихся ортогональных трещин) надежность прогнозов распределения компонентов, переносимых коллоидами, резко падает в сравнении со случаем миграции вещества в простейших ионных формах. Это связано с повышенной чувствительностью коллоидного транспорта к индивидуальным параметрам трещин, в то время как соответствующие флуктуации скоростей переноса растворенных форм вещества сглаживаются матричной диффузией. Вместе с тем данные работы [30] показывают, что в [c.337]



Смотреть страницы где упоминается термин Матричная РНК транспорт: [c.441]    [c.218]    [c.85]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Матричная РНК



© 2025 chem21.info Реклама на сайте