Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация и биологическая активность

    Вторичный посредник — физиологически активное регуляторное вещество, специфически стимулирующее активность протеинкиназ-фер-ментов, переносящих остаток фосфорной кислоты на другие белки, что приводит к изменению их конформации, биологической активности и энергоемкости. [c.460]

    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]


    Особенно большим и подчас определяющим является влияние межмолекулярных взаимодействий на конформации биологически активных молекул. Хорошо известно, что белки при повышении температуры или изменении pH среды денатурируют, т. е. частично или полностью меняют свою пространственную структуру и утрачивают биологическую активность. Под действием [c.207]

    Обычно предполагают, что специфическое свертывание полипептидной цепи начинается еще во время ее синтеза на рибосоме. Растущая цепь свертывается случайным образом и в конце концов принимает наиболее устойчивую конформацию. По окончании синтеза пептидной цепи молекула самопроизвольно складывается в нативную конформацию. Однако специфическую биологическую активность белок чаще всего приобретает лишь после его модификации другими ферментами, что иногда приводит к дальнейшему изменению конформации. [c.106]

    Число исследований в области квантовой биохимии нарастает очень быстро. Большое внимание уделяется, например, исследованиям конформаций биологически активных веществ и влияния окружающей среды на эти конформации. Многие важные работы опубликованы в сборниках ежегодных Международных симпозиумов по квантовой химии и биохимии [12]. [c.339]

    Со времени второго издания прошло 8 лет и возникла необходимость внести ряд дополнений и изменений. Основные изменения заключаются в том, что три главы по стереохимии мы объединили в одну, которая по-прежнему помещена после описания химии простых функциональных групп. Тем не менее, те, кто полагают, что раздел стереохимии должен следовать сразу за вводными главами, всегда могут читать главы в том порядке, в котором считают нужным. Материал, связанный с конформациями открытой цепи и насыщенных циклических соединений, значительно расширен, при изображении насыщенных щести-членных циклов там, где это уместно, использовалась конформация кресла наряду с прежней плоской структурой. Третье издание дополнено новой главой, содержащей сведения о четырех группах физиологически активных веществ в ней вводится и развивается понятие о взаимосвязи структуры и биологической активности соединений в фармакологической области, и, кроме того, кратко описано биосинтетическое происхождение природных веществ. [c.8]

    Нативная конформация. Биологически активная конформация белковой молекулы. [c.1014]

    Реакции, с помощью которых аминокислоты включаются в состав белков, были вкратце рассмотрены в гл. И (разд. Д, 1) и будут еще обсуждаться в гл. 15 (разд. В). Однако следует иметь в виду, что образование биологически активных катализаторов, гормонов и структурных белков часто еще не завершается тем, что пептидная цепь сходит с рибосомы и свертывается в определенную предпочтительную конформацию. Очень часто белки далее гидролизуются в определенных местах и могут подвергаться различным ковалентным модификациям, [c.94]


    Возможности использования инфракрасной спектроскопии для определения конформации биологически активных молекул лучше всего, пожалуй, проиллюстрировать на примере исследования дихроизма инфракрасного излучения применительно к фибриллярным структурам. Дихроизм, о котором идет речь, [c.511]

    Крайний случай конформационно о изменения — денатурация белков, которая может быть вызвана нагреванием или обработкой различными реагентами, например сильными кислотами и основаниями, мочевиной, гуанидингидрохлоридом и додецилсульфатом натрия. Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (здесь уже почти нет ни спиралей, ни (3-слоев, ни любых других типов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами воды таких водородных связей значительно больше, чем внутримолекулярных. Специфическая биологическая активность белка при денатурации теряется, изменяются и физические свойства, например меняется константа седиментации, вязкость и поглощение света. Легкость, с которой происходит денатурация белка, и тот факт, что денатурация в принципе обратима, свидетельствуют о том, что различия в энергии между свернутыми конформациями и открытой конформацией статистического клубка невелики. [c.105]

Рис. 2-35. Предположительная биологически активная конформация окситоцина [625]. Рис. 2-35. Предположительная биологически активная конформация окситоцина [625].
    Установленная секвенированием последовательность аминокислот может рассматриваться лишь в качестве одного из уровней структурной организации белка. Она закодирована в соответствующем гене и находится в тесной связи со вторичной и третичной структурами белка, его конформацией и биологической активностью. Образование вторичной и третичной структур [c.374]

    Как следует из приведенных данных и анализа цитируемой литературы [29, 30, 34-37, 40, 41], на определение конформаций простых углеводов в растворах было направлено много усилий. В результате применения рентгеновской, ИК-, ЯМР-спектроскопии, диэлектрометрии, поляриметрии, теоретического конформационного анализа в настоящее время получена достаточно четкая картина состояния и поведения моно- и дисахаридов в растворах. Это вызвано большим интересом к изучению особенностей гидратации этих биологически активных веществ термодинамическими методами, так как необходимым условием правильной интерпретации термодинамических свойств и характеристик гидратации является наличие точной информации о состоянии растворенного вещества в растворе. [c.76]

    В некоторых случаях измерение биологической активности может служить полезным средством оценки влияния липидов на конформацию белков (ферментов, гормональных рецепторов). В этой области проведены многочисленные работы, показавшие, что некоторые ферменты мембран обладают специфичностью по отношению к некоторым классам фосфолипидов и физическое состояние липидов (фаза геля или жидкого кристалла) влияет на активность ферментов [42, 91]. Специфичность ферментов мембран по отношению к некоторым фосфолипидам касается только полярной части (табл. 7.8). [c.314]

    В, относятся к биологически активным структурам АТ II. При реализации такого подхода были использованы три синтетических аналога, имеющих высокое сродство, и один аналог, не обладающий сродством к рецептору гладкомышечной ткани крысы. Расчет, однако, показал, что среди найденных конформаций АТ II и трех его активных аналогов нет структур, которые хотя бы фрагментарно совпадали между собой. Отсутствие совпадения свидетельствовало лишь о некорректности анализа АТ11, о чем уже писалось в гл. 14. Однако авторы работы [383], не ставя под сомнение результаты своих расчетов, сделали, с моей точки зрения, неверный шаг. Они отказались от принципа комплементарности потенциальных поверхностей гормона и рецептора и посчитали, что для образования продуктивного комплекса достаточно точечного соответствия. Для отбора конформаций были учтены всего два расстояния, причем с вариациями в широких интервалах между атомом СР остатка УаР и атомами СР остатков Н15б(4,2-6,2 А) и Рго (6,7-8,2 А). [c.568]

    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]


    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]

    А. с. позволила изучить мн. р-ции диссоциации, комплек-сообразования, переноса протона, конформац. 1 евращення, возбуждение и дезактивацию внутрнмол. колебаний в газообразных и жидких, в т. ч. в биологически активных, средах. В ТВ. телах исследуют образование и исчезновение дефектов в кристаллах, нек-рые резонансные явления. Перспективны акустич. исследования гетерог. р-ций, [c.20]

    На рисунке иредставлена пространственная конфигурация 5а-холестана -родоначальника многих биологически активных стероидов, там же приведены аксиальные илн экваториальные конформацин р-заместителей во всех положениях молекула 5сх-холестана. Очевидно, что конформация а-заместителей нротнвоноложиа конформацин заместителей, занимающих в этой структуре р-ноложегше (т.е. р-замес-тителей). Аксиальные 10р и 13р-метнльные грунны носят названия ангулярных групп, так как они находятся в узловых положениях сочленения колец. [c.1819]

    Тиреолиберин регулирует в аденогипофизе синтез и секрецию тиреотро-пина — гормона, стимулирующего щитовидную железу (рис. 2-36). Вероятно, ему также свойствен эффект стимуляции выделения пролактина (окончательно в этом вопросе еще иет ясности). Исследование конформации и данные о биологической активности синтетических аналогов тиреолиберина позволили Петерсону и Гийемену [644] предложить трехмерную модель взаимодействия гормона с рецептором (рис. 2-37). [c.257]

    Методами А. с. исследуют св-ва и строение в-ва, кинетику быстрых р-ций, конформац. превращения, возбуждение и дезактивацию внутримол. колебаний в газах и жидкостях (в т. ч. в биологически активных средах). В твердых кристаллах исследуют образование и исчезновение дефектов. [c.80]

    Специфич, биол. св-ва ФСГ обусловлены -субъединицей, к-рая приобретает биол. активность только после соединения с а-субъединицей. Молекула ФСГ сравнительно легко диссоциирует на субъединицы, напр, под влиянием мочевины или пропионовой к-ты. Изолир. о- и -ФСГ, полученные в результате диссоциации молекулы ФСГ, могут вновь рекомбинировать с образованием биологически активной молекулы ФСГ. Олигосахаридные цепи необходимы для соединения субьеда-ниц и поддержания надлежащей конформации молекулы, защищают полипептидные цепи субъединиц от расщепления протеолитическими ферментами. [c.113]

    Большой научный интерес для теории строения молекул имеют результаты исследования стереоизомерии в ряду галогенопроизводных циклогексана методом дипольных моментов. Термин конформационное равновесие в отечественной научной литературе впервые введен в работе [11]. Среди исследованных соединений имеются представители, обладаюшие высокой биологической активностью (у-изомер гек-сахлорциклогексана). На основании экспериментальных и теоретических дипольных моментов установлены наиболее предпочтительные крес-лообразные конформации молекул полигалогенопроизводных циклогексана с 2, 6, 7 и 8 атомами галогенов. [c.67]

    Большие усилия были предприняты для того, чтобы найти корреляцию между химическими и биологическими свойствами нейрогипофизарных гормонов, а также их аналогов и их конформацией в растворах. Вальтер и сотр. [625] на основании исследований ЯМР-спектров [624] предложили биологически активную конформацию для окситоцина (рис. 2-35). Это пространственное расположение отличается от модели Урри — Вальтера [626] тем, что боковая цепь тирозина расположена над 20-членным кольцом. Правда, существуют некоторые признаки, позволяющие говорить не о единственной биологически активной конформации . Скорее всего, один из конформеров, находящихся в равновесии, предпочтительно вступает во взаимо- [c.251]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Денатурация — любые вызванные физическими и химическими воздействиями изменения, которые при сохранении первичной структуры белка сопровождаются большей или меньшей потерей его биологической активности и других индивидуальных свойств белка. При денатурации ослабляются гидрофобные взаимодействия, разрываются водородные связи, а в присутствии восстановителей и дисульфидные связи. Денатурация с разрывом невалентных связей обычно обратима. Путем образования новых невалентных связей, а также благодаря взаимодействию с денатурирующим веществом новая конформация стабилизируется. Возникающее метастабильное состояние при восстановлении физиологических условий может вернуться к нативной конформации ренатурация). Принципиально возможна ренатура-ция и при восстановительном расщеплении дисульфидных связей (рис. 3-8). [c.358]

    По данным Рихардса [219], рибонуклеаза А при обработке бактериальной протеазой субтилизином расщепляется между остатками А1а-20 и Ser-21 на так называемый S-nenmud (1 — 20) и S-белок с последовательностью 21 — 124, содержащей 4 дисульфидных мостика. Оба компонента после разделения показывают ничтожную биологическую активность. Однако, если смешать их один с другим, биологическая активность восстановливает-ся, т. е. S-пептид и S-белок с помощью невалентных связей собираются в так называемую рибонуклеазу 5, обладающую пространственной структурой, близкой к нативной конформации. [c.403]

    По даииым Скоффоие и сотр. [222], синтезировавших большое число аналогов S-пептида, ои, будучи одии, образует статистический клубок. Спиральная конформация возникает лишь после соедннення с S-белком. Для связывания S-пептнда и S-белка существен остаток фенилаланина в положении 8. Для полного достижения биологической активности достаточно участка 1 — 14 S-пептнда. [c.404]

    Таким образом, согласно бифуркационной теории, ни один из этапов механизма спонтанного свертывания белка, включая окончательное построение его биологически активной трехмерной структуры, не содержит селекции практически бесконечного множества мыслимых конформационных состояний аминокислотной последовательности. Следовательно, если описанный механизм адекватен реальному процессу, т.е. если бифуркационная теория верна, то разработанный на ее основе метод расчета вообще не встречается с проблемой поиска глобального минимума энергии на многомерной потенциальной поверхности. Содержание конформационного анализа в этом случае распадается на две также непростые задачи. Одна из них заключается в оптимизации составляющих белковую цепь олигопептидных участков в их свободном состоянии при вариации всех возможных комбинаций знамений двугранных углов вращения каждого отдельного фрагмента. Цель решения этой задачи состоит в идентификации конформационно жестких и лабильных участков аминокислотной поверхности. Вторая задача включает анализ невалентных взаимодействий тех и других и многоступенчатую минимизацию энергии с постепенным увеличением длины цепи и раскрепощением конформационных параметров жестких участков. В конечном счете будет получена количественная оценка конформационных возможностей всей белковой молекулы и выявлена ее глобальная нативная трехмерная структура. Этот вывод справедлив, однако, лишь в принципе, а реально ни та, ни другая задача не поддаются решению без введения дополнительных положений о структурной организации нативной конформации белка. Предоставленная бифуркационной теорией возможность перехода от расчета целой белковой цепи к расчету отдельных фрагментов и далее анализу комбинаций их пространственных форм в огромной степени упростила проблему, но не сделала ее практически разрешимой. Причина та же - множественность локальных минимумов энергии на потенциальной поверхности, правда, теперь уже не всей белковой цепи, а ее конформационно жестких и лабильных участков, которые могут состоять из 10-12 аминокислотных остатков. Как известно, независимому и строгому анализу поддаются [c.248]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]

    Например, в кристаллах миоглобина и гемоглобина их от 5 до ю лизоцима - всего 5. Дж. Рапли, детально изучивший этот вопрос, в своем обзоре пишет "...кристалл глобулярного белка можно рассматривать как упорядоченный и открытый ансамбль компактных молекул, имеющих почти что минимальный контакт с областью, не занятой твердым веществом. Эта область составляет около половины объема кристалла-она непрерывна, заполнена растворителем, аналогичным основной массе жидкости, и состоит из каналов, способных вместить молекулы соединений с молекулярной массой более 4000 [354. С. 257]. Полностью исключить возможность отклонения структуры белка в кристалле от структуры в растворе тем не менее нельзя. Но несомненно и то, что в большинстве случаев изменения могут коснуться только положений некоторых боковых цепей в областях контактов на периферии глобулы. Вероятность, что конформационные нарушения произойдут, и произойдут именно в активном центре, невелика, конечно, в том случае, когда кристаллизация осуществляется в условиях, близких к тем, при которых фермент или другой белок проявляет активность. При идентичности структур фермента в кристалле и растворе различия в эффективности катализа могут быть обусловлены лишь разными условиями диффузии субстрата и продуктов реакции и стерическими затруднениями для конформационных перестроек активного центра. Дж. Рапли по этому поводу замечает "...кристаллический белок обладает ферментативной активностью, и, хотя его свойства несколько отличаются от свойств растворенного белка, сам факт каталитического действия кристаллического фермента служит достаточно убедительным аргументом против предположения о большом изменении конформации в процессе кристаллизации [354. С, 271]. Таким образом, можно заключить, что рентгеноструктурные данные почти всегда правильно отражают укладку основной цепи белка и, как правило, буквально воспроизводят биологически активную конформацию. Поэтому все, что говорится Меклером и Идлис о "жидком" и "твердом белке, по моему мнению, представляется глубоко ошибочным и выглядит не более, чем попыткой спасти идею стереохимического кода. Неудачно также отождествление жидкого" белка с "расплавленной глобулой". Трудно предположить, что короткоживущее промежуточное состояние, которое возникает на последней стадии свертывания полипептидной цепи и о котором пока имеется лишь туманное предствление, является активной формой белка, способной функционировать длительное время. [c.538]

    I При изучении биологических свойств гормона обе модификации ([Pro ]- и [Рго ]-) могут представить большой самостоятельный интерес. Первый налог, сохраняющий все функциональные группы природной молекулы, йолезен для идентификации и исследования той биологической активности В-пептида, за которую ответственна конформация (I). Привлечение второго аналога поможет выяснить роль боковой цепи Ser в реализации этой активности. Кроме того, структуры (I), одинаковые у 5-пептида, [Pro ]- и [Рго ]-аналогов по геометрии оптимальных форм, отличаются по своим ди-Иамическим конформационным свойствам (особенно [Рго ]-), поскольку име-for разную абсолютную энергию внутримолекулярной стабилизации (соответственно -12,5 -13,4 и -17,2 ккал/моль). [c.563]

    Asn J-аналог и рассмотренный до него [Рго ]-аналог могут быть рекомендованы для изучения биологической активности природного соединения, за которую ответственна конформация шейпа eefeefee, т.е. для изучения иной части спектра биологического действия гормона, чем при использовании [D-Ala ]-, [Pro ]- и [Рго ]-аналогов. Молекула [Рго ]-аналога имеет практически в чистом виде структуру типа eefeefee при сохранении всех химически активных групп природного нонапептида. У молекулы [c.564]

    В гл. 9 были рассмотрены результаты теоретического анализа ангиотензина П (АТ П), Asp -Aгg2-VaP-Tyr -VaP-His6-Pro -Phe [378]. Исследование конформационных возможностей октапептидного гормона позволило установить его структурную организацию и тем самым определить набор низкоэнергетических пространственных форм, потенциально являющихся биологически активными. Следующая задача заключается в выявлении в найденном наборе оптимальных конформаций структур АТ П, актуальных для реализации гормональной активности, и определении конкретных связей между ними и функциями. Это тема следующего, четвертого, тома издания "Проблема белка". Здесь же на примере главным образом АТ II только отметим некоторые причины, сдерживающие установление принципов структурно-функциональной организации гормонов, а также покажем, что достижение цели немыслимо без решения обратной структурной задачи. [c.566]


Смотреть страницы где упоминается термин Конформация и биологическая активность: [c.108]    [c.119]    [c.147]    [c.80]    [c.61]    [c.75]    [c.204]    [c.401]    [c.297]    [c.106]    [c.279]    [c.383]    [c.403]    [c.135]    [c.289]    [c.339]    [c.555]   
Успехи стереохимии (1961) -- [ c.146 ]




ПОИСК







© 2025 chem21.info Реклама на сайте