Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации как случайный процесс

    Уравнение (6.78) описывает также изменения частоты аллели в диплоидной популяции в отсутствие доминантности, т. е. в том случае, когда свойства гетерозиготы Аа являются средним от соответствующих свойств гомозигот АА и аа [6.10, с. 148, 150]. Если скорости мутаций va и Юг равны, то уравнение (6.78) переходит в уравнение (6.57) при простом изменении масштаба времени. Интерпретируя результаты разд. 6.5.2 с генетической точки зрения, мы приходим к несколько неожиданным выводам. Даже если в среднем обе аллели одинаково пригодны (X = 0) (в детерминированной среде в этом случае никакого отбора не происходило бы), в случайной среде при условии > 4 следует ожидать преимущественно лишь одну из аллелей. Действительно, в случайной среде популяция будет находиться в каком-то одном из наиболее вероятных состояний Хт+ или Хт- = 1 — Хт+ — экстремумов стационарной плотности вероятности случайного процесса (6.78). Иначе говоря, несмотря на отсутствие систематического давления отбора в ансамбле популяций (при достаточно большой интенсивности флуктуаций среды) будут доминировать сравнительно бедные популяции. [c.185]


    Мутации как случайный процесс [c.23]

    Белки-мутанты можно привлекать к интерпретации структурных принципов. Все фиксированные мутации белков можно рассматривать как эксперименты природы, которые указывают нам, какие вариации мало влияют на стабильность белка и на динамику свертывания. С другой стороны, случайные и, по-видимому, нефиксирую-ш иеся мутации, как в аномальном гемоглобине, дают примеры вариаций, заметно понижающих стабильность белковой структуры. Оба типа мутаций можно использовать для совершенствования наших представлений о невалентных силах в белках. Для этой цели можно использовать процедуры минимизации энергии исходных и мутировавших полипептидных цепей на основе известных трехмерных структур [501]. Определенные таким образом разности энергий и геометрические отклонения можно сравнить с экспериментальными данными, полученными соответственно из термодинамических измерений [413, 417[ и рентгеноструктурных исследований с высоким разрешением. Аналогичные сопоставления можно провести с помощью моделирования свертывания цепи (разд. 8.6), которое позволяет получить дополнительную информацию о некоторых аспектах процесса свертывания. [c.207]

    Молекулярные часы эволюции и мутации. Как уже отмечалось, существование эволюционных часов можно объяснить в том случае, если накопление мутаций зависит от времени и не зависит от вида организма и если замены фиксируются в результате случайных процессов. Из разд. 5.1.3 мы узнали, что частоты возникновения некоторых мутаций человека для мужских половых клеток выше, чем для женских, что частоты возникновения ряда мутаций увеличиваются с возрастом отцов и что многие мутации, вероятно, связаны с репликацией ДНК. Существование сильных различий в продолжительности поколений разных животных делает гипотезу о простой зависимости накопления мутаций от времени весьма маловероятной. [c.25]

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]


    Удачная последовательность имеет высокую ско рость воспроизведения и дает потомство , обладающее высокой скоростью воспроизведения. Кроме того, хотя удачная последовательность и должна давать мутации, однако частота мутаций не должна быть слишком большой, иначе последовательность слишком быстро разрушится. Как мы видим, налицо здесь сложный случайный процесс, имеющий характер процесса отбора и проявляющий сходство с биологической селекцией видов. [c.235]

    Во-первых, наблюдаемую долю гетерозиготности можно полностью объяснить аллельной изменчивостью, которая совершенно не влияет на приспособленность. Каждый локус способен мутировать и давать огромное число форм, около на цистрон обычной длины. Конечно, очень большое, но не известное нам число замещений, вероятно, приводит к таким изменениям фермента, в результате которых активность его снижается или теряется вовсе эти мутации будут элиминироваться отбором. Однако многие замещения могут оказаться нейтральными, и большая их часть будет утрачена в течение нескольких поколений после их появления. Некоторые из этих мутаций, хотя они в конце концов и элиминируются, могут временно достигнуть промежуточных генных частот благодаря случайному дрейфу. Еще некоторые, примерно гN новых нейтральных мутаций, в конечном счете закрепляются в популяции, и часть из них может встречаться с промежуточной или высокой частотой. В любой момент большинство локусов будет представлено только одним аллелем, но все уменьшающиеся доли локусов будут представлены 2, 3, 4,. .., п аллелями с варьирующими частотами. После того как процесс продолжался в течение некоторого времени, достигается устойчивое состояние своего рода динамического равновесия между введением новых мутаций, случайным увеличением числа этих мутаций с помощью дрейфа и случайной потерей изменчивости. Мы ожидаем, что чем выше частота возникновения мутаций и чем больше величина популяции, тем больше нейтральных изменений будет накапливаться, не теряясь в дальнейшем. Фактически в устойчивом состоянии гетерозиготность Н будет [c.212]

    Генная инженерия - целенаправленное изменение генов в составе молекулы ДНК с целью получения новых белков и пептидов. Когда мы говорим о мутациях, то рассматриваем изменения генов, которые происходят случайно или под влиянием различных факторов, часто весьма нежелательных. Но в хромосомах и генах постоянно происходят нормальные процессы обмена отдельными участками хромосом, отдельными генами, их переме- [c.60]

    Как мы видели, отдельная нейтральная мутация в конечном счете случайным образом теряется популяцией (гл. 20). Бывает, однако, что новый ген дает определенное селективное преимущество несущим его особям, и тогда ситуация меняется. Пусть приспособленность таких особей (несущих недавно мутировавший ген) равна 1 + 5. Вследствие случайных процессов, рассмотренных в гл. 20, преобладающее большинство новых полезных генов в течение нескольких первых поколений после своего появления будет потеряно, точно так же, как и в случае нейтральных генов. Однако отличие здесь состоит в том, что полезная мутация имеет шанс закрепиться в конечном счете в популяции. Когда 5 мало, такая вероятность выжить равна приблизительно 25. Рассмотрим вкратце доказательство этого утверждения. [c.458]

    Генные мутации нередко называют случайными изменениями в генах. В данном контексте определение случайные требует разъяснения. Мутационные изменения на самом деле могут не быть случайными на молекулярном уровне. Определенные изменения последовательности нуклеотидов могут возникать в цепи ДНК чаще, чем другие. Так называемая случайность мутационного процесса относится не к молекулярному строению, а к адаптивным свойствам мутантных генов. Мутации случайны в том смысле, что они не направлены в сторону какого-либо нынешнего или будущего состояния приспособленности данного организма, [c.59]

    Одно из наиболее поразительных свойств живых существ — это высокая степень мутабильности генов. Вредные мутации уносят многие человеческие жизни в раннем возрасте. Считают, что очень высокая частота заболеваний раком у людей старшего возраста обусловлена в какой-то мере накоплением соматических мутаций. Многие мутации могут появляться в результате ошибок репликации ДНК, а также процессов репарации и рекомбинации. Скорость мутирования возрастает в присутствии химических мутагенов, оод влиянием физических воздействий, таких, как, например, воздействие ультрафиолетовым излучением и рентгеновскими лучами, а также при случайном включении вирусной ДНК в хромосомы. [c.289]

    Каким образом увеличивался размер генома клеток при эволюции организмов от низших форм к высшим Изменения формы и поведения организмов обусловлены мутациями, меняющими последовательность аминокислот в белках. Однако такие мутации не могли увеличить количества генетического материала в процессе эволюции. Вполне возможно, что в ряде случаев в клеточное ядро случайно включалась копия одного илн нескольких генов [32а]. Тогда при наличии дополнительной копии гена клетка могла выжить, даже если в результате мутации в одном из парных генов нарушались структура и функция кодируемого им белка если парный ген оставался неповрежденным, организм был способен расти и размножаться. Дополнительный, несущий мутацию ген мог оставаться в нефункционирующем состоянии много поколений. До тех пор, пока этот ген продуцировал безвредные, нефункционирующие белки, он не элиминировался под давлением естественного отбора и со временем мог опять мутировать. Вполне возможно, что в конце концов белок, кодируемый этим многократно мутировавшим геном, оказывался в каком-то отношении полезным для клетки. [c.38]


    Биологическая специализация устанавливается в процессе случайных мутаций и последуюш,его отбора. Наиболее важны мутации, возникающие в ДНК- В табл. 9.1 даны ориентировочные частоты мутаций ДНК высших организмов. В этих организмах частоты допустимых мутаций на уровне ДНК существенно не влияют на отбор белков, поскольку структурные зоны [78, 475], кодирующие белок, составляют менее 10% ДНК (разд. 4.1). Тем не менее, как было установлено, ДНК гомогенна в пределах одного вида [476, 477], что указывает на существование некоторого отбора и на уровне ДНК. Вопрос о том, определяется ли эта гомогенность малой популяцией предшественников и малым генетическим дрейфом (недарвиновская гипотеза, поддерживаемая нейтралистами [144, 478—480]) [c.199]

    Естественный отбор, однако, вроде работает. Дарвин был прав. Я не знаю — почему Это значит, что я не могу свести это к основным принципам науки, имеющей дело с неживой материей (вывести это логически из первых принципов). Нужны новые принципы. Я не в состоянии их сформулировать. Что-то должно изменять существенно вероятность следующей случайной точечной мутации (точнее, ее реализации) после предыдущей. На самом деле это означает су-вдествование началгьного плана. Такой подход подвергся тщательному анализу в начале 29-х годов прошлого века выдающимся русским биологом Львом Бергом. Его фундаментальная работа Номогенез, или эволюция на основе закономерностей [105, 106] была переведена на английский язьщ и опубликована в Великобритании и США. Главное утверждение Берга может быть сформулировано следующим образом. Биологическая эволюция происходит в соответствии со строгими законами, в отличие от дарвиновской эволюции, которая основана на случайны событиях. Борьба за существование и естественный 01 б0р играют в этом процессе вторичную роль и, во всяком случае, прогресс в организации не зависит от борьбы за существование. [c.135]

    Имеет ли генетический словарь физический, молекулярный смысл или корреляция между кодонами и аминокислотами совершенно случайна Что можно сказать об эволюции кода в этой связи Какие факторы влияют на чтение кода, на процессы транскрипции и трансляции Что и как искажает код Каковы физико-химические причины мутаций  [c.589]

    Формирование патогенности у микроорганизмов процесс динамичный и является результатом в значительной степени случайных мутаций, закрепленных в процессе эволюции. [c.348]

    Существование большой части неэффективных мутаций указывает на то, что процесс соматического мутагенеза носит более или менее случайный характер и касается в основном V-гена или области, расположенной за ним. Для генов тяжелых цепей переключение классов может служить тем механизмом, который активирует мутагенез. Ун-гены, ассоциированные с константными областями л-типа, редко мутируют, тогда как те же самые Ун-гены, соединенные с у- или а-цепями, могут подвергаться мутациям значительно чаще. [c.516]

    Задание 189. Напишите программу для моделирования самоорганизации ДНК в качестве примера самоорганизуюшихся систем. Используйте для этого следующую простую модель. Пусть имеется 100 молекул ДНК, состоящих из 12 нуклеотидов четырех видов (их обозначим буквами А, Т, С и G). Последовательность нуклеотидов в этих 100 молекулах ДНК случайная. Назовем одну из последовательностей идеальной она имеет некоторые преимущества перед остальными. Из 100 молекул ДНК в результате репликации получается еще 100 молекул. Однако при репликации встречаются ошибки (мутации), например в количестве 1%. Теперь из 200 молекул 100 погибает. При этом имеет значение преимущество, которым обладают молекулы с последовательностью нуклеотидов, похожей на идеальную . (Например, при каждом совпадении нуклеотида и его положения в цепи с идеальной последовательностью вероятность гибели уменьшается в два раза.) Процессы репликации и гибели протекают очень быстро. В конце концов все молекулы ДНК должны получить идеальную последовательность нуклеотидов, хотя вероятность ее образования в результате случайного процесса составляет 1 16777216. Что будет, если мутации будут возникать чаще или реже  [c.330]

    На первый взгляд кажется, что близкое сходство разных популяций по аллельному составу должно быть сильным доводом в пользу уравновешивающего отбора, потому что такое сходство не согласуется с тем, чего можно ожидать от случайного процесса. Если аллельные частоты — результат возникающих изредка мутаций, распространяющихся случайным дрейфом, то мы ожидаем, что две сравниваемые популяции будут иметь приблизительно одинаковую среднюю гетерозиготность, но полиморфные локусы в разных популяциях не будут одними и теми же и частоты отдельных аллелей в каждом данном локусе не будут связаны друг с другом. В том-то и состоит сущность процесса дрейфа, что отдельный аллель, встречающийся с высокой частотой в одной популяции, никак не связан с аллелем, преобладающим в другом месте. Однако наблюдения, изложенные в гл. 3, четко показывают, что одни и те же аллели имеют одинаковую частоту в разных популяциях. Если исключить боготскую популяцию и гены, ассоциированные с инверсиями в третьей хромосоме, частоты аллелей у D. pseudoobs ura замечательно сходны во всех исследованных популяциях от Калифорнии до Техаса и Гватемалы. То же сам[ое справедливо для D. willistoni и в разной степени для других обследованных организмов, в том числе для человека. [c.217]

    Начало периода мысли знаменуется появлением около 30 тысяч лет тому назад из "пучка" неандертальцев человека, морфологически почти не отличающегося от ньше живущих людей. В его деятельности впервые в истории Земли обнаруживаются признаки индивидуальной духовной жизни и отражается представление о людском сообществе как о некоей целостности. Возникшая у нашего пращура неведомая ранее рефлексирующая мысль проявилась в зарождении религиозной духовной силы, сплотившей людей и придавшей смысл их существованию, в появлении искусства, морали, права. Таким образом, психогенез, сменивший период жизни - биогенез, привел к появлению наряду с существовавшим уже интуитивным сознанием также рефлексирующего мышления, т.е. разума. Именно он, а не труд создал человека. Совершенствование духовной жизни человечества представляло собой процесс становления новой эволюционной фазы биосферы - фазы ноогенеза. П. Тейяр де Шарден пишет ... Если изучение прошлого и позволяет нам сделать некоторую оценку ресурсов, которыми обладает организованная материя в рассеянном состоянии, то мы еще не имеем никакого понятия о возможной величине "ноосферной" мощности. Резонанс человеческих колебаний в миллионы раз Целый покров сознания, одновременно давящий на будущность Коллективный и суммированный продукт миллионов лет мышления ... Попытались ли мы когда-либо представить, что представляют собой эти величины [1. С. 224]. Сознание, которое, с его точки зрения, все время эволюционировало в формирующейся материи по восходящей линии, достигает в ноосфере своего апогея - состояния гармонии тройного единства - структуры, механизма и развития. Единство структуры заключается в исчезновении границ между естественным и искусственным. Если все то, что создано человеком и, следовательно, считается искусственным, не отбрасывается эволюционным потоком, то оно становится гоминизированным, естественным. Единство механизма эволюционного процесса Тейяр де Шарден видит в сходстве случайных мутаций и человеческих изобретений. "Ибо в конце концов, - полагает он, - если действительно наши "искусственные" сооружения не что иное, как закономерное продолжение нашего филогенеза, то столь же закономерно и изобретение... может рассматриваться как осознанное продолжение скрытого механизма, регулирующего произрастание всякой новой формы на стволе жизни.. .. Дух поисков и завоеваний - это постоянная душа эволюции" [1. С. 178-179]. Развитие - это совершенствование и распространение сознания. Человек в этом эволюционном процессе, по его мнению, представляет "уходящую ввысь вершину великого биологического синтеза. Человек, и только он один, - последний по времени возникновения, самый свежий, самый сложный, самый радужный, многоцветный из последовательных пластов жизни" [1. С. 179]. [c.33]

    Установление кода выдвинуло новые проблемы. Имеет ли ге-нетически код физический, молекулярный смысл илп корреляция между кодонами и аминокислотами случайна Что можно сказать в. этой связи о происхождении и эволюции кода Как связаны точечные мутации с особенностями кодовой таблицы Какие факторы влияют на чтение кода, на процессы транскрипции и трансляции Ответы — далеко не полные — на этп вопросы содержатся в дальнейшем изложении. Здесь мы остановимся на физическом смысле кода. [c.280]

    Почти до середины XX в. среди бактериологов господствовало мнение, что в отличие от других живых организмов бактерии при неблагоприятных внешних воздействиях выживают не благодаря случайным генетическим изменениям (мутациям), а вследствие того, что именно эти воздействия в большинстве случаев запускают физиологические процессы, которые и позволяют бактериям выжить. Эта теория была опровергнута исследованиями С.Е. Лурия и М. Дельбрюка (Luria S.E., Delbru k М., Geneti s 28 491-511, 1943), которые доказали, что устойчивость Е. соИ к бактериальным вирусам (бактериофагам) обусловлена именно произошедшими в них мутациями, а не реакцией бактерий на воздействие со стороны бактериофага. Эти данные нашли подтверждение в работах других авторов, изучавших последствие других неблагоприятных внешних воздействий. Исследования Лурия—Дельбрюка положили начало современной генетике микроорганизмов. [c.26]

    Другая грань конструктивной роли необратимых процессов я резкого различия между порядком и случайностью открывается перед нами, если мы рассмотрим в качестве примера механизм биологической эволюции. Со времен Дарвина принято считать маловероятным, что биосфера является тем статическим, гармонично детерминированным миром, который некогда открылся Кеплеру, созерцавшему звездное небо. Биологические виды и даже предбиологические макромолекулярные соединения [1.11, 12] являются самоорганизующимися системами. Они непрестанно становятся , т. е. пребывают в состоянии возникновения, которое существенно зависит от случайных событий. Случайно и независимо от направления эволюции создается обширный банк наследственных генетических вариаций. Этот банк служит бесценной сырьевой базой для эволюции. Именно в нем эволюция находит благоприятные вариации, частота которых в популяции последовательно возрастает и стабилизуется точными, однозначно определенными законами передачи наследственных признаков. Нетрудно видеть, что отличительная особенность эволюционной теории, заведомо не имевшая аналогов в физических науках в те времена, когда создавалась эволюционная теория, придает случайным событиям необычайно важное значение. Мутации играют роль случайного двигателя прогресса. Однако мутации приводят и к гораздо более важным и далеко идущим последствиям, поскольку именно такие случайные события наугад выбирают один из нескольких возможных путей эволюции. По общепринятому ныне мнению исход эволюции биосферы не определен однозначно. Если бы жизнь на какой-нибудь другой планете развивалась в тех же условиях, в каких происходила эволюция живого на Земле, то мы вполне готовы к тому, что формы жизни могли бы быть совершенно иными (не исключено даже, что в основе их лежала бы совершенно другая химия). По общему мнению при надлежащих условиях возникновение жизни неизбежно. В этом смысле жизнь — явление физическое, материальное, детерминированное. Однако из сказанного отнюдь не следует, что жизнь предсказуема. Наоборот, на более современном яэыке можно было бы сказать, что в процессе развития жизнь непрестанно осуществляет случайный выбор одного из многих (быть может, даже бесконечно многих) возможных сценариев. Предсказать достоверно, какого именно сценария будет [c.15]

    В серии сложных опытов фон Борстель [202, 203] изучал время гибели яиц, отложенных девственными самками наездника Вгасоп, гетерозиготными по хромосомным транслокациям. Эти самки откладывали нормально гаплоидные яйца. В процессе мейоза конъюгация хромосом, гетерозиготных по транслокациям, приводит к неравномерному распределению хроматина между мейоти-ческими ядрами. Вследствие этого примерно половина гамет имеет ядра с нехваткой части хромосомного плеча, и половина яиц от такой самки гибнет в результате отсутствия определенных блоков генов. При исследовании 27 различных транслокаций, характерных для случайного отбора проб утраченных блоков генов предположительно из разных частей хромосом, зародыши всегда гибли примерно на середине развития, когда они содержали до 50 тыс. ядер, и уже после того, как происходила эмбриональная дифференциация. Это указывает на то, что начальное развитие зародыша не зависит от наличия всех генов и что гаплоидный зародыш насекомого, образовавшийся из одного ядра с нехваткой довольно значительного блока генов, может дифференцироваться до довольно далекой стадии. Хадорн [80] также изучал фазы развития, когда сказывается влияние летальных мутаций. [c.122]

    Роль избыточности нуклеотидных последовательностей у эукариотов до сих пор окончательно не установлена. В этой главе мы рассмотрим два частных случая, для которых смысл многократного повторения определенных генов понятен. Однако ни один из этих примеров не объясняет широкой распрсстраненности и высокой степени повторяемости нуклеотидных последовательностей в ДНК эукариотов. Бриттен предположил, что повторяющиеся последовательности отражают процесс эволюции. Согласно этому предположению, в зародышевой линии клеток исходного организма эукариотов происходит случайная многократная репликация определенной нуклеотидной последовательности хромосомы. Многочисленные копии этой последовательности затем передаются потомкам этого организма и в процессе такой передачи в них накапливаются мутации, которые были бы летальными, если бы этот организм содержал только одну копию данной псследовательности. [c.506]

    Полиморфизм длины фрагментов рестрикции. Если имеется подходящий ДНК-зонд, то можно обнаружить прямым методом некоторые генетические болезни, возникающие вследствие мутаций (гемофилия, мыщечная дистрофия и др.). Ответственный за болезнь, но неидентифицированный ген может быть обнаружен, если он находится вблизи последовательности ДНК, поддающейся определению. Во всем человеческом геноме примерно одно из 150 оснований является полиморфным, т. е. варьируется у разных индивидуумов. Каждое щестое из этих случайных изменений или порождает, или разрушает участок рестрикции. В результате этого потенциальные участки рестрикции присутствуют вдоль молекулы ДНК с интервалом примерно в 1000 пар оснований. Их наличие или отсутствие у разных людей приводит к тому, что ДНК в процессе рестрикции разрезается на фрагменты разной длины (полиморфизм длины рестрикционных фрагментов). Если при обследовании членов семьи обнаруживается взаимосвязь между полиморфизмом длины рестрикционных фрагментов и наследственным заболеванием, делается заключение, что данный участок рестрикции расположен вблизи от гена, ответственного за патологию. В таком случае присутствие данного типа полиморфизма можно использовать для предсказания наличия мутантного гена у другого члена семьи или в ткани плода. Однако использование этой техники для пренатальной диагностики требует предварительного обследования семьи. [c.528]

    Идея о том, что действие мутационных факторов опосредовано ферментами, возникла почти одновременно с возрождением генетики. В работах, проведенных с 1902 по 1908 г., Геррод (Garrod) высказал мнение, что болезнь человека-алкаптонурия-обусловлена нарушением какой-то метаболической реакции, катализируемой ферментом. Его фраза- врожденные ошибки метаболизма - заключает в себе концепцию, согласно которой генетический дефект может привести к нарушению определенного метаболического процесса, обусловливая тем самым наблюдаемый фенотип. В последующие три десятилетия накопились примеры влияния специфических мутаций на определенные биохимические реакции. Основная трудность исследований этого периода состояла в том, что приходилось довольствоваться случайно отобранными мутациями, не всегда пригодными ДJiя биохимического изучения. [c.17]

    Больщинство изменений в аминокислотной последовательности белков обусловлено мутациями небольших участков генома, медленно накапливающимися с течением времени. Точковые мутации и небольшие вставки и делеции возникают случайно, по-видимому, с более или менее равной вероятностью во всех участках генома, за исключением горячих точек , где частота мутирования существенно выше. Многие мутации, изменяющие амино-Тсислотную последовательность, оказываются вредными и довольно быстро отбрасываются в ходе естественного отбора (скорость этого процесса зависит от степени повреждающего эффекта). Меньшее число мутаций оказывается полезным, но эти мутации могут распространиться в популяции и в конце концов вытеснить исходную нуклеотидную последовательность. Когда мутантный вариант гена вытесняет исходный, говорят, что мутация закрепилась в популяции. Очень спорный вопрос какая доля мутационных изменений в аминокислотной последовательности может оставаться нейтральной, т. е. не оказывать действия на функцию белка, и поэтому может накапливаться в результате случайного дрейфа и закрепления  [c.275]

    Случайно распределяемые мутации непредсказуемым образом влияют на функцию белка. Некоторые из них могут вызывать его инактивацию, другие, наоборот, способствуют появлению высокой специфичности к определенному антигену. Таким образом, суть данного процесса сводится к тому, что среди популяции лимфоцитов селектируются такие клетки-продуценты антител, в которых благодаря случайной мутации образовался V-домен, подходящий для связывания присутствующего антигена. [c.516]


Смотреть страницы где упоминается термин Мутации как случайный процесс: [c.351]    [c.153]    [c.109]    [c.351]    [c.38]    [c.504]    [c.74]    [c.107]    [c.311]    [c.111]    [c.79]    [c.15]    [c.405]    [c.28]    [c.86]    [c.507]    [c.70]    [c.142]   
Смотреть главы в:

Современная генетика Т.3 -> Мутации как случайный процесс


Современная генетика Т.3 (1988) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Случайные процессы



© 2025 chem21.info Реклама на сайте