Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры устойчивость макромолекул

    Макромолекулы пептона содержат 45,5% хлора. Однако хлор-метильные группы полимера связаны с теми углеродными атомами основной цепи, при которых не имеется атомов водорода. При нагревании полимера это исключает возможность отщепления хлористого водорода, обычно ускоряющего дальнейшую термическую деструкцию таких полимеров, как поливинилхлорид, поливинилиденхлорид, и кроме того, придает пептону высокую термическую устойчивость. Расплав пентона имеет сравнительно низкую вязкость, что облегчает его переработку в изделия методом литья под давлением. Коэффициент термического расширения пентона значительно ниже, чем для полиэтилена, и примерно аналогичен коэффициенту расширения полистирола и полиами- [c.406]


    ИТ в том, что при рассмотренной выше стерической стабилизации якорный фрагмент, нерастворимый в дисперсионной среде, и растворимый в среде стабилизирующий фрагмент являются двумя частями одной дифильной макромолекулы. При совместной модификации эмульсий нерастворимый в среде полимер является модификатором битума, а растворимый модифицирует воду. Следует отметить, что главной целью совместной модификации является собственно не сама стабилизация битумных эмульсий (при использовании правильно подобранного эмульгатора получаются достаточно устойчивые во времени эмульсии), а улучшение характеристик эмульсий применительно к процессам их использования, в частности, некоторое повышение вязкости системы для поверхностной обработки, а также повышения адгезии пленки вяжущего при разрушении эмульсии на поверхности. Это, в конечном счете, влечет за собой повышение качества конструктивных слоев дорожной одежды, изготовленных с использованием подобных эмульсий, а также заметное увеличение их срока службы. [c.75]

    Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 15.1). [c.231]

    Протяженность блоков сопряжения и расстояние между ними зависят от метода синтеза полимера с сопряженной системой связей, его химического строения, конформационной устойчивости макромолекул, энергии межмолекулярных взаимодействий и от физической структуры полимера. Все факторы, приводящие к нарушению копланарности, снижают степень делокализации электронов и ухудшают свойства полимеров, обусловленные системой сопряжения. Кристаллизация, если она не связана с изменением конформации молекул и нарушением копланарности, приводит к улучшению в первую очередь полупроводниковых свойств, так как переход электронов от одной молекулы к другой облегчается упорядоченным расположением макромолекул в полимере. [c.410]


    Кривая потенциальной энергии внутреннего вращения имеет несколько минимумов, вообще говоря, не одинаковых по глубине. Большую часть времени макромолекулы находятся в положениях, соответствующих минимумам энергии. Устойчивые конформации звена называют поворотными изомерами. По Волькенштейну [15], предложившему теорию поворотной изомерии полимеров, конформацию макромолекулы можно приближенно рассматривать как последовательность поворотных изомеров. В поворотно-изомерном приближении изменения конформации полимерной цепи представляют собой переходы от одних наборов поворотных изомеров к другим. [c.153]

    Релаксационные явления играют очень существенную роль при производстве высокопрочных волокон, пленок и других ориентированных полимерных изделий . С одной стороны, время релаксации должно быть небольшим, так как только в этом случае обеспечиваются достаточно быстрые выпрямления и ориентация макромолекул без разрушения образца. С другой стороны, ориентированные высокомолекулярные тела являются термодинамически неравновесными системами, стремящимися к самопроизвольной дезориентации, поэтому для сообщения полимеру устойчивой упорядоченной структуры необходимо большое время релаксации. [c.466]

    Для ПВХ верхний температурный предел термодинамической устойчивости макромолекул в значительной степени определяется условиями энергетического воздействия, поскольку разложению с разрывом С—С-связей обычно подвергается уже дегидрохлорированный полимер. [c.315]

    В теплостойких полимерах строение макромолекул цепей также имеет определяющее значение на устойчивость резин к старению. Старение полисилоксановых резин связано с окислением органического обрамления и деструкцией цепей. Слабыми местами являются поперечные связи С—С, которые легче подвергаются окислительной деструкции, чем боковые метильные группы. [c.350]

    Описанные результаты, по-видимому, нельзя объяснить в рамках модели ПСК, поскольку сетка зацеплений в расплавах ТМО, судя по данным измерения вязкости, образуется при 2,3-10 , что существенно превышает Мег = 1,07-10 . Таким образом, аномальный характер температурной зависимости поверхностного натяжения ТМО при М = Мег следует отнести к стабилизации зародышей складчатых структур при понижении температуры расплава. Очевидно, охлаждение расплава ниже температуры плавления полимера (т. е. переход в область термодинамической устойчивости кристаллической фазы) должно приводить к противоположному явлению разворачивания цепей, поскольку наибольшей термодинамической стабильностью, вообще говоря, обладают кристаллы полимеров, образованные макромолекулами с полностью выпрямленной конформацией (более подробно об этом см. главу VI). Видимо, именно конкуренцией этих двух противоположных эффектов объясняется резкое уменьшение скорости кристаллизации из расплава фракций ПОЭ в области ММ, в которой происходит аномальное понижение плотности упаковки (см. рис. 1.8 и 1.9). [c.46]

    У гетероцепных полимеров, в макромолекуле которых между отдельными звеньями имеются химические связи, менее устойчивые к различным воздействиям, деструкция протекает наиболее интенсивно в результате одновременного действия повышенной температуры, кислорода воздуха и гидролитических реагентов (воды). [c.129]

    Под влиянием внешних воздействий (кислорода воздуха, ультрафиолетового облучения, тепла, механических напряжений, ионизирующих излучений) меняется химический состав и структура макромолекул, что приводит к изменению физикомеханических свойств полимера. Устойчивость полимеров к внешним воздействиям неодинакова, различными являются и [c.80]

    Как установлено, соединения фосфора составляют выдающиеся исключения из проблемы, которая заключается в невозможности доказать существование макромолекулярных структур в неорганической химии с помощью методики, разработанной для органических полимеров. В сравнении с большинством полностью неорганических полимеров ряд макромолекул фосфора проявляет хорошую устойчивость при наличии небольшого количества поперечных связей, так что они могут быть растворены и изучены в растворе без заметных химических превращений. Это объясняется тем, что фосфор ковалентно связан с соседними атомами во всех его соединениях [75]. [c.31]

    Замораживание растворов полимеров может приводить к деструкции макромолекул вследствие возникновения механических сил, которые развиваются в процессе роста кристаллов растворителя. Устойчивость макромолекул при замораживании имеет практическое значение, поскольку воздействию погодных условий могут подвергаться промышленные растворы полимеров при циклическом замораживании и размораживании в процессе транспортировки, хранения и эксплуатации. [c.411]

    Растворы полимерных соединений представляют собой термо динамически устойчивые системы, что связано с молекулярно-дисперсным состоянием компонентов раствора. Следовательно, в истинных растворах полимеров последние диспергированы до молекулярного состояния. Однако для растворов высокомолекулярных, как и низкомолекулярных соединений характерна ассоциация. молекул. Отдельные сегменты гибких и очень длинных макромолекул полимеров могут входить одновременно в состав нескольких ассоциатов. Как и в растворах низкомолекулярных веществ, ассоциаты полимерных молекул находятся в непрерывном состоянии образования и разрушения. Продолжительность изменения ассоциатов высокомолекулярных молекул значительно больше, чем для ннзкомолекулярных веществ, что объясняется большей громоздкостью молекул. [c.63]


    Кривая потенциальной энергии внутреннего вращения имеет несколько максимумов, вообще говоря, не одинаковых по глубине. Большую часть времени связь С—С находится в положениях, соответствующих минимумам энергии. Эти устойчивые конформации звена, получающиеся путем вращательных движений вокруг единичных связей, называются поворотными изомерами. По М. В. Волькенштейну [4.1], развившему теорию поворотных изомеров в полимерах, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров. В поворотно-изомерном приближении внутреннее вращение в цепи представляет собой переходы от одних к другим поворотным изомерам. [c.84]

    Набухание ВМС. ВМС набухают и растворяются в низкомо-кулярных жидкостях. Так как подвижность молекул растворителя намного больше подвижности макромолекул, то первой стадией взаимодействия является набухание — проникновение молекул растворителя в глубь ВМС со значительным увеличением его массы и-объема, но с сохранением формы образуется гель. Если низкомолекулярная жидкость ограниченно растворима в ВМС, то набухание будет ограниченным, оно не заканчивается образованием текучей системы. Растянутая сетка макромолекул, стремясь сократиться, препятствует увеличению содержания растворителя. Прю неограниченной растворимости низкомолекулярной жидкости в полимере его пачки после набухания продолжают раздвигаться и макромолекулы постепенно диффундируют в растворитель, образуя раствор. Такое набухание называют неограниченным. Основным от личием разбавленных равновесных растворов ВМС от лиофобных. золей является их термодинамическая устойчивость, что свойственно и истинным растворам. [c.285]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    Присоединение аминов к полиэпоксидам не сопровождается выделением каких-либо побочных продуктов. Действие алифатических и ароматических ди- и полиаминов на полиэпокснды существенно различно.. Алифатические амины легко вступают в реакцию с полиэпоксидами при комнатной температуре, образуя редко сшитые полимеры,. Для улучшения термической устойчивости полимера и повышения его твердости, реакцию присоединения амина стремятся провести до образования возможно более высокомолекулярного соединения. Для этого реакцию проводят при 80— 100°. Повышение температуры увеличивает реакционную способность макромолекул и вторичных водородных атомов амина. [c.412]

    Между исходным состоянием полимеризации и деструкцией ноли, 1сра существует непосредственная связь, например, при термической деструкции полимеров, имеющих низкое значение теплот полимеризации, образуется в основном мономер, т е. имеет место процесс деполимеризации, если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, ю при термической деструкции мономер почти не образуется, и процесс приводит к образованию устойчивых макромолекул пониженной молекулярной массы. Для замедления реакции деполимеризации применяют метод сополимеризации с мономером, склонным к реакции передачи цепи при деструкции. Так, сополимер метилметакрилат а с акрило-нитрилом (небольшое количество) менее склонен к реакции деполимеризации, чем полиметилметакрилат, из-за стабильности радикала — СН-С—, образованного в ре- [c.107]

    При нагревании М. вступают в реакции присоединения, замещения, изомеризации, рекомбинации и диспропорционирования. Термич. устойчивость М. зависит от их структуры, фазового состояния полимера, строения макромолекул п др. В кристаллич. фазе полимера М. более устойчивы, чем в аморфной. Кинетика гибели М. при нагревании в области низких темп-р имеет т. наз. ступенчатый характер, а при высоких темп-рах описывается ур-нием второго порядка. При нагревании наблюдается превращение активных М. в более стабильные. Эффективная энергия активации рекомбинации и превращений М. лежит в пределах 21—251 кдж1молъ (5—60 ккал/моль). Рекомбинацию и превращение М. связывают с перемещением М. по механизму миграции свободной валентности или по механизму диффузии. [c.65]

    Вопрос состоит в том, что считать системой. В случае обычных жидких смесей или растворов низкомолекулярных веществ под системой надо понимать весь объем жидкости в области полного смешения или фазы в области разделения. Иное дело в случае полимеров каждую макромолекулу в принципе можно рассматривать как малую субсистему, тоже бинарную (напомним, что в координационной сфере два компонента — собственно полимер и растворитель). Хотя системы, состоящие из относительно малого числа частиц (в данном случае мономерных звеньев цепи), обладают рядом специфических особенностей принцип флуктуаций, в том числе гетерофазных, для них не претерпевает существенных изменений. Поэтому задача об устойчивости глобулы в самом общем виде решается в обычной форме, выражающей принцип Ле Шателье—Вант-Гоффа  [c.107]

    Скорость фотоокисления в целом определяется в значительной степени концентрацией кислорода в полимерной фазе, которая в свою очередь зависит от коэффициента его диффузии и растворимости в полимере. Природа полимера — способ упаковки макромолекул в свободном объеме и плотность, определяемые, в частности, подвижностью сегментов цепей и когезионной энергией цо-лимера, — влияют на скорость диффузии кислорода. Увеличение степени сш ивания и кристалличности полимера уменьшает скорость фотоокисления, поэтому более стереорегулярные (они же и более кристалличные) полимеры устойчивее, чем атактичные, а в негомогенных полимерах атака кислорода происходит только на аморфные участки. Эффект разветвленности противоположен более разветвленные полимеры фотоокисляются легче, чем линейные. [c.154]

    Очень высокая термическая и термоокислительная устойчивость характерна для ароматических полиимидов. Введение в цепь алифатических групп —СН2—, —С(СНз)2— и др. снижает устойчивость. Это показывает, что она лимитируется самыми слабыми по отношению к тепловому воздействию участками цепи. Пониженной термостабильностью обладают полиимиды на основе диангидридов пиридин-тетракарбоновой, алифатических и алициклических тетракарбоновых кислот. В этих случаях слабым участком цепи являются радикалы соответствующих диангидридов. У полностью ароматических полиимидов термостабильность лимитируется обычно устойчивостью имидного цикла, сопряженного с фенильными ядрами. Эти вопросы подробно разобраны в предыдущей главе. Нужно добавить, однако, что следствием высокой термической устойчивости макромолекул ароматических полимидов является высокая стабильность физических свойств этих полимеров при длительном воздействии тепла. Например, полимер ПМ (1-5) в виде пленки сохраняет минимально допустимые механические свойства при 350° в инертной среде 1 год, при 250° на воздухе — 8—10 лет (данные для Н-пленки , см. следующую главу). У полимера ДФО за 500 часов пребывания на воздухе при 250° прочность снижается не больше чем на 10%. Карбоцепные полимеры резко ухудшают свойства при более низких температурах за меньшее время. Например, нестабилизированный полипропилен теряет 90% прочности за 115 часов при 125° С на воздухе. У полимера ПМ такие потери прочности за такое же время наблюдаются только при 400° С. Это видно и из табл. 22, где приведены результаты испытания термостабильности некоторых ароматических полиимидов по изменениям механических свойств. [c.104]

    При анионной полимеризации образуются достаточно устойчивые макромолекулы полимера, называемые живущими полимерами, способными и дальше инициировать процесс полимеризации, В этом состоит отлиние анионной полимеризации от катионной. [c.342]

    В растворах полимеров, как и в золях, частицы (макромолекулы) находятся в тепловом движении, н поэтому понятие о гетерогенности пли гомогенности системы не может являться однозначным ирн всех условиях. В хороших растворителях молекула линейного полимера вытянута, в ней отсутствует однородное внут-ренее ядро, характерное для микрофазы. В плохих растворителях макромолекула свернута в компактную глобулу и ее можно рассматривать как частицу отдельной фазы. Такое свертывание макромолекул аналогично возникновению новых фаз. При формировании глобул происходит определенное ориентирование углеводородных цепей и полярных групп, подобное тому, как это наблюдается при образовании мицелл из молекул ПАВ. Максимальное межфазное натяжение на границе макромолекула — среда определяется, как и для всех термодинамически устойчивых коллоидных систем, уравнением Ребиндера и Щукина (VI. 32). [c.311]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    СвН,) , полимер изопрена, высокоэластичный материал растительного происхождения, применяемый для изготовления резины и резиновых изделий. К. н. содержится в млечном соке (латексе) гевеи, кок-сагыза и других растений-каучуконосов. Товарный К. н. получают почти исключительно из млечного сока бразильской гевеи. К. н. набухает, растворяется в бензине, бензоле, хлороформе, сероуглероде и др. В воде, спирте, ацетоне К. н. практически не растворяется и не набухает. При температуре свыше 200 С К. н. разлагается с образованием низкомолекулярных углеводородов, среди которых всегда находится изопрен. Огромное практическое значение имеет взаимодействие К. н, с серой, хлоридом серы 0), органическими пероксидами и другими веществами, вызывающими вулканизацию, т. е. соединение атомами серы макромолекул К. н. с образованием сетчатой структуры. Это придает К. н. высокую эластичность в широком интервале температур. Благодаря высокой эластичности, водо-и газонепроницаемости, прекрасным электроизоляционным свойствам, устойчивости против агрессивных сред К. н. чрезвычайно широко применяется во всех областях техники и в быту. В сыром виде используется не более 1% добываемого К. н. (резиновый клей, подошва для обуви и др.). Большая часть К. н. используется для изготовления резины и автомобильных шин. Основная масса (свыше 2 млн. т) К. н. добывается в Индоне- [c.123]

    В главе 2.2 были рассмотрены принципы модификации водной фазы и отмечено, что при одновременной модификации дисперсионном среды и дисперсной фазы битумных эмульсий были получены превосходные результаты по улучшению практически всех эксплуатационных характеристик как самих эмульсий, так и остатка их распада. Кроме того, модификация парными полимерами, при которой достигается синергетический эффект, позволяет получать очень устойчивые битумные эмульсии, которые без заметного ухудшения основных свойств можно хранить до 1 года и более. Это связано с явлением стерической стабилизации, которое подробно рассмотрено в [39]. В этой работе изложены основы для решения задачи регулирования устойчивостиколлоидных дисперсий, дается анализ стабилизации различных дисперсных систем полимерами. Ниже рассматривается механизм стабилизации коллоидных систем присоединенными макромолекулами. [c.73]

    В хлорированном каучуке количество хлора колеблется от 64 до 65%. Отсутствие ненасыщенных групп в макромолекулах хлоркаучука придает ему более высокую атмосферостой кость, повышает его термическую устойчивость и стойкость к действию растворов кислот и щелочей. Пленки хлоркаучука выгодно от-. шчаются от пленок ненасыщенных полимеров также хорошей адгезией к металлическим поверхностям. Вследствие высокой полярности хлоркаучук хрупок и тверд, хотя и сохраняет пленкообразующие свойства. Для придания хлорированному каучуку эластичности е1 о совмещают с эластичными полимерами, маслами или пластификаторами. [c.247]

    Поливиниловые эфиры титановой кис.лочы отличаются высокой водостойкостью и химической устойчивостью. Гидролиза эфира ие наблюдается даже при длительном нагревании полимера в воде. Такую нс-обычную для сложных эф1[ров химическую стойкость поливиниловых эфиров титановой кислоты можно объяснить тем, что титап соединяется с поливиниловым спиртом не только эфирными, но и координационными связями. Макромолекулы этого полимера, очевидно, соединены между собой ячейками и ледующего строен ия  [c.301]

    Полимеры первой группы отличаются от полимеров второ1( группы большей жесткостью макромолекулярных цепей, высокой степенью кристалличности и большей плотностью, а следовательно, большим межмолекулярным взаимодействием. При одинаковом среднем молекулярном весе полимеры первой группы менее растворимы, имеют более высокую температуру размя1чения и большую твердость по сравнению с полимерами второй группы. Частое расположение арильных звеньев в макромолекулах придает полимеру повышенную термическую устойчивость. [c.350]

    Сочетание этиленовых звеньев с фениленовыми и строго линейная структура макромолекул полипараксилилена придают ему высокую термическую устойчивость, уменьшают его хрупкость и сообщают полимеру некоторую пластичность при высоких температурах, что облегчает условия его переработки. [c.351]

    В линейных полимерах макромолекулы представляют собой цепочечные последовательности повторяющихся звеньев, число которых обычно настолько велико, что уже саму макромолекулу надлежит трактовать как статистический ансамбль, подчиняющийся, однако, несколько необычной термодинамике малых систем. В этих системах некоторые интенсивные параметры становятся экстенсивными и наоборот [21, с. 229, 234, 240] сами макромолекулы способны претерпевать фазовые переходы, размазанные, оД нако, по температуре и времени (что, впрочем, является лишь следствием правила Онзагера абсолютно резкий фазовый переход возможен только для бесконечно большого кристалла)—и это сказывается на макроскопическом уровне, когда фазовые переходы осуществляются на фоне уже свершившегося более фундаментального перехода в полимерное состояние. Вопрос о правомочности трактовки перехода в полимерное состояние как особого фазового перехода достаточно обстоятельно не рассматривался, но аргументы в пользу этой точки зрения приведены в упоминавшемся очерке [15, с. 176—270] и в более поздних работах [22]. Главными аргументами являются полная применимость критериев переходов, связанных с группами симметрии [23], возможность изображения равновесной полимеризации или поликонденсации в виде обычных диаграмм свободная энергия — температура (с поправками на малость систем, которые особенно существенны на ранних стадиях процесса) и соображения, основанные на двухсторонней ограниченности температ фного диапазона устойчивости полимерной серы [24, т. 2, с. 363-371]. [c.11]

    Все жесткоцепные полимеры в отсутствие кинетических помех неминуемо образуют термодинамически стабильную организованную фазу нематического типа при некоторой концентрации ф, тем большей, чем больше /о. Но это продолжается лишь до /о порядка 0,63, чему соответствует ф 1. fo 0,63 — это граница между жестко-и гибкоцепными линейными полимерами. При /о > 0,63 макромолекулы уже ни при каких условиях не могут самопроизвольйо уложиться параллельно термодинамическая причина этого ясна из рис. 1.10 (левая часть). Это исчерпывает вопрос о возможности самопроизвольного появления в гибкоцепных полимерных системах тёрмодинамически устойчивых и морфологически вероятных структур типа пачек из многих макромолекул с развернутыми цепями. Напротив, в жесткоцепных полимерах появление устойчивых нематических доменов неизбежно только домены эти размерами и числом входящих в них макромолекул во много раз превосходят пачки Каргина — Китайгородского — Слонимского [19, с. 45]. [c.39]

    Итак, создание синтетическим путем макромолекулы с уникальной устойчивой третичной структурой в принципе возможно. Трудно, однако, сказать, какова вероятность отбора при синтезе именно каталитически активной конформации. Тем не менее (даже без закрепленной третичной структуры) полимерные модели привлекают к себе столь широкое внимание, что число работ, посвященных этим системам, исчисляется сотнями. Однако обнаруживаемое увеличение реакционной способности функциональных групп, присоединенных к полимерной цепи, в большинстве изученных систем обусловлено лишь тривиальными эффектами среды (приводящими, например, к кажущемуся сдвигу р/(а) или же локальным концентрированием субстрата на полимере [62]. Те же эффекты играют основную роль и в мицелляр-ном катализе (см. 6 этой главы). Это не удивительно, поскольку мак-ромолекулярные частицы полимерного мыла (типа ХЬУ ) по таким свойствам, как характер взаимодействия гидрофобных и гидрофильных фрагментов друг с другом и с другими компонентами раствора, подвижность отдельных звеньев, диэлектрическая проницаемость и др., близки к мицеллам поверхностно-активных веществ [64]. Рассмотрим некоторые примеры. [c.105]


Смотреть страницы где упоминается термин Полимеры устойчивость макромолекул: [c.16]    [c.109]    [c.16]    [c.45]    [c.357]    [c.377]    [c.126]    [c.495]    [c.45]    [c.283]    [c.432]    [c.432]   
Неорганические полимеры (1965) -- [ c.79 ]




ПОИСК







© 2024 chem21.info Реклама на сайте