Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия вода полимер

    Интерес к природе взаимодействия между водой и полимерами вызван многими причинами, однако главных из них две. Первая заключается в том, что взаимодействие вода —полимер играет важную роль в биологических процессах. Вторая причина связана с тем, что это взаимодействие благоприятным или пагубным образом сказывается на эксплуатационных свойствах промышленных полимеров. Это становится очевидным при чтении всех статей настоящей монографии, но наиболее важным является поиск механизмов, движущих сил и последствий взаимодействий воды с растворенными, набухшими и жесткими полимерами. [c.8]


    Калориметрическое исследование взаимодействий вода — полимер [c.353]

    Вторая серия калориметрических экспериментов для получения зависимости характера и силы взаимодействия вода — полимер от структуры мембраны была выполнена на асимметричных мембранах р-2221. Использованные мембраны показаны на рис. 21.7 представленные микрофотографии сделаны с помощью электронного микроскопа с поперечных срезов мембраны. Условия формования мембран указаны в подписи к рисунку. Из этих фотографий видно, что с увеличением времени испарения рас- [c.356]

    Если предположение о поверхностном связывании согласуется с нашими наблюдениями, то толщину слоя связанной воды можно вычислить, принимая, что плотность этого слоя не сильно отличается от 1 г/см . Вычисленная таким путем толщина слоя составляет 200—300 А, что является очень большой величиной. Мы не считаем точной эту расчетную величину, но предполагаем, что взаимодействие вода — полимер распространяется на расстояния, большие нескольких молекулярных диаметров, и что это взаимодействие существенным образом проявляется в процессе разделения. [c.359]

    Другим способом контроля набухания полимерных мембран является сшивание первоначально растворимого в воде полимера путем образования ковалентных поперечных связей между соседними звеньями. Для управления набухаемостью мембран можно использовать как длину сшивающих агентов, так и плотность сшивания. Вследствие того, что основная цепь сильно взаимодействует с водой, такой подход будет особенно ценным в тех случаях, когда желательна большая степень набухания, например в диализных мембранах из сшитого поливинилового спирта. Эти мембраны также особенно ценны, если желательно [c.69]

    За последние годы советскими учеными П. А. Ребиндером, А. В. Ду-манским, Ф. Д. Овчаренко, Б. В. Дерягиным, О. Д. Куриленко, А. В. Киселевым и многими другими проведены широкие исследования проблемы лиофильности дисперсных систем. Были развиты новые представления о механизме взаимодействия воды с поверхностью различных твердых фаз и макромолекул полимеров с учетом роли водородной связи в этом процессе, даны термодинамические обоснования процессов смачивания, подробно изучена связь между лиофильностью и диэлектрическими свойствами многих дисперсных систем, накоплен большой экспериментальный материал по исследованию лиофильности высокомолекулярных соединений, дисперсных минералов и др. Все это имеет важное практическое значение. [c.98]


    Помимо основного полимера полиамидные композиции содержат ряд веществ, одни из которых остаются после реакции получения полимера (например, находящиеся с ним в равновесии определенные количества воды и мономера), а другие — представляют собой специально вводимые добавки, которые в минимальной степени взаимодействуют с полимером. [c.248]

    ПВС, содержащий незначительное количество остаточных ацетатных групп, растворяется в воде лишь при нагревании до 80— 85 °С. При контакте ПВС с водой полимер набухает, при этом вода проникает преимущественно в аморфные области полимера, сольватируя гидроксильные группы и ослабляя межмолекуляр-ное взаимодействие. С увеличением степени кристалличности, например после предварительного нагревания полимера при 100— 190 °С, набухание ПВС в воде уменьшается. [c.110]

    Таким образом, вода и ДЭГ как пластификаторы ПВС проявляют синергическое действие пластифицирующий эффект смеси превышает сумму пластифицирующих эффектов отдельных, компонентов. Содержащаяся в пластификаторе вода может-как непосредственно взаимодействовать с полимером, так и выступать в качестве промежуточного звена, образуя водород-, ные связи с гидроксильными группами по-" [c.117]

    В большинстве экспериментальных работ, выполненных в этой области, взаимодействие водорастворимых полимеров с частицами кремнезема в суспензии изучалось, как правило, в связи с практическими приложениями, касающимися процесса флокуляции или очистки воды. Однако некоторое число аналогичных исследований было проведено и в неводных растворах. [c.973]

    Метод основан на реакции взаимодействия воды, находящейся в исследуемом полимере, с гидридом кальция и измерении объема выделяющегося водорода  [c.120]

    Первый анализ работ, посвященных переносу растворов электролитов, приведенный в [5, с. 205], позволяет сформулировать факторы, обусловливающие специфику диффузии этих сред. Особенности переноса многокомпонентных сред заключаются в том, что диффузионный поток зависит не только от взаимодействия частиц компонентов среды с полимерным материалом, НОИ от их взаимодействия между собой в среде и в полимере. Особенности переноса электролитов возникают в результате взаимодействия молекул воды и электролита как в растворе, так и в полимере. Взаимодействие молекул воды и электролита в растворе определяется природой электролита, взаимодействием воды и электролита в полимере и природой полимера. [c.48]

    Реакция поликонденсации носит ступенчатый характер. Каждый акт взаимодействия функциональных групп приводит к наращиванию цепи на одно звено при этом образуется вначале димер, затем тример и т. д. Наращивание цепи происходит не только в результате взаимодействия молекул мономера с димером, тримером, но и в результате взаимодействия низкомолекулярных полимеров между собой. Одновременно с ростом цепи поли.мера идут побочные реакции — происходит деструкция полимера и реакция между целями. Деструкция под действием продуктов реакции (воды, аммиака и др.) может быть ослаблена путем тщательного удаления их из зоны реакции. Кроме того, деструкция уменьшается при проведении реакции в атмосфере азота. [c.322]

    Старение растворов полиакриламида можно наблюдать как по Изменению реологических свойств, так и визуально по образованию хлопьев. Следует отметить, что при старении происходит не только взаимодействие макромолекул полимера с образованием ассоциатов, но и полимеризация акриламида, усиливающая этот процесс. На этот процесс заметно влияют и примеси, присутствующие в воде, применяемой для приготовления растворов полиакриламида [45]. [c.35]

    При разработке инженерных решений по реализации этих задач могут быть использованы следующие результаты выполненных исследований системный подход к решению проблемы методы планирования эксперимента математические модели соответствующего вида защиты и оптимальные варианты технологии составы, включающие новые эффективные ингибиторы коррозии биоциды и вещества многоцелевого назначения. Последние должны быть нетоксичными для человека, обладать быстродействием в начальный период функционирования и достаточной стабильностью во время эксплуатации машин, оборудования и сооружений. Амины, кетамины, имины замедляют, например, процессы взаимодействия воды и кислорода воздуха с поверхностью металла и снижают, таким образом, начальные скорости коррозии. Эти вещества ингибируют также процессы старения полимеров и резин и некоторые из них снижают эффекты биоповреждений. [c.116]

    Полиэфиры и полиамиды борной кислоты получают конденсацией гликолей и диаминов с борной кислотой [1] при температуре ниже 100°. В случае взаимодействия в этих условиях борной кислоты с этилендиамином и 2-амино-2-метил-1-пропано-лом были получены растворимые в воде полимеры. [c.235]


    Чем больше полярных групп имеется в полимерной матрице, тем ыше сорбционное сродство полимера к воде. Однако доступность этих полярных групп, относительная прочность связей вода — вода и вода — полимер, а также степень кристалличности полимерной матрицы оказываются весьма существенными факторами, объясняющими отсутствие простой корреляции между числом полярных групп и растворимость Например, высокоупорядоченные кристал-литы недоступны для воды, но на их поверхности полярные группы активно взаимодействуют с водой. [c.303]

    Согласно первоначальным воззрениям, развитым еще в конце тридцатых годов нашего столетия, реакция протекает в водной среде. Растворенные в воде молекулы мономера (имеющиеся в воде даже при практически нерастворимом мономере) взаимодействуют с молекулами инициатора, образуя зародыши полимеризации (радикалы), которые растут за счет реакции с другими молекулами мономера. По мере образования нерастворимого в воде полимера в раствор переходят новые молекулы мономера, и равновесное состояние в растворе поддерживается до тех пор, пока не будут исчерпаны молекулы мономера в каплях, которые выполняют, следовательно, роль резервуара мономера. Реакция инициирования вследствие больших размеров в эмульсионных системах поверхности раздела может также проходить на границе раздела в пограничных адсорбционных слоях, куда мог т диффундировать молекулы мономера. [c.170]

    Настоящая коллективная монография написана ведущими зарубежными учеными и посвящена исследованию структуры воды, а также изучению кинетического и термодинамического аспектов физико-химического взаимодействия воды в полимерах. Выпуск данной книги — весьма заметное явление в мировой химической литературе. Оно отражает все возрастающий интерес к проблеме взаимодействия такого специфического растворителя, как вода, с макромолекулами синтетического и природного происхождения. [c.5]

    В книге значительное место отведено описанию динамических и равновесных параметров гидратации биологических высокомолекулярных объектов, например белков (статьи 4, 6, 8, И и др.) и полисахаридов (статьи 15—17), что позволит специалистам в области физикохимии полимеров расширить представления о сложной картине взаимодействия воды с гидрофильными макромолекулами. [c.6]

    Раздел второй, названный Перспективы взаимодействие воды с полимерами на макро- и микроуровнях , состоит из трех статей. В нем дается краткий исторический обзор по проблеме и анализируются избранные аспекты современных представлений о взаимодействии воды с модельными субстратами и белками (4), а также рассматриваются явления на границах раздела вода — полимер и лед — полимер (5) и устанавливаются стадии процесса гидратации белков, которые выявлены на основании измерений, выполненных с помощью различных экспериментальных методов (6). [c.8]

    Взаимодействие воды с блочными полимерами и синтетическими смолами. В статье 25 показано, что вода, поглощенная найлоном-6,6 на первых стадиях сорбции, связана с полимером наиболее прочно и не замерзает. В статье 32 к прочно связан- [c.14]

    ВЗАИМОДЕЙСТВИЕ ВОДЫ С ПОЛИМЕРАМИ НА МАКРО- И МИКРОУРОВНЯХ [c.81]

    ВЗАИМОДЕЙСТВИЕ ВОДЫ с ПОЛИМЕРАМИ [c.94]

    Дополнительная информация, касающаяся взаимодействий вода — полимер, была получена путем исследования влажных образцов сополиоксамидов методом дифференциальной сканирующей калориметрии. Калориметрическое исследование проводили как на полимерных порошках, так и на пористых полимерных пленках, причем основное внимание было обращено на сополиоксамид р-2221. [c.353]

    Одним из лучших способов повышения эффективности технологий ПАВ является применение добавок полимеров [6]. Первоначально закачкой оторочки полимера (обычно ПАА) продвигали оторочку композиции ПАВ по пласту, при этом концентрацию полимера в оторочке постепенно снижали до нуля. Большая, чем у воды, вязкость раствора полимера предотвращала преждевременное разрушение водонефтяного вала, образовавшегося в результате воздействия композиции ПАВ [6]. В дальнейшем бьши разработаны поверхностноактивные полимерсодержащие составы (ПАПС), позволяющие одновременно увеличивать степень вьггеснения остаточной нефти и охвата пласта заводнением [139,138]. Современным вариантом ПАВ-полимерного воздействия является технология ЬТРР (закачка полимеров с низким межфазным натяжением [133, 140, 141]). В данной технологии применяется закачка низкоконцентрированных растворов высокоэффективных полимеров (ПАА или полисахаридов) и ПАВ. Низкие концентрации реагентов обеспечивают экономическую эффективность воздействия. Взаимодействие макромолекул полимера и мицелл ПАВ позволяет существенно снизить межфазное натяжение и увеличить вязкость вытесняющего агента. [c.31]

    О том, что взаимодействие макромолекул целлюлозы в ее аморфных областях с молекулами воды является преобладающим, свидетельствует экзотермичность взаимодействия целлюлозы с водой [79]. Принимая, что в крахмале все ОН-группы доступны для воды, был рассчитан тепловой эффект присоединения 1 моль воды к группе ОН, он составил - 7,1 кДж [80]. Термодинамическое изучение взаимодействия воды с аморфной целлюлозой [81] показало, что при пониженном содержании воды взаимодействие сопровождается изменением как энтальпии, так и энтропии системы. Парциальная энтропия аморфных областей целлюлозы возрастает, а парциальная энтальпия воды уменьшается. Это обусловлено упорядочиванием молекул воды и разупоря-дочиванием сегментов целлюлозы при взаимодействии. При увеличении содержания воды упорядочивание молекул воды в системе уменьшается, а упорядочивание сегментов целлюлозы увеличивается, т.е. энтальпия возрастает по абсолютному значению, и ее вклад в свободную энергию образующейся системы становится преобладающим. Адсорбированная вода, ослабляя систему водородных связей в доступных областях целлюлозы, оказывает пластифицирующее действие на целлюлозу [76, 82], приводит к расстекловыванию аморфных областей и переводу полимера в высокоэластическое состояние благодаря возрастанию сегментальной подвижности, увеличению свободного объема, появлению свободных от водородных связей функциональных групп. Можно предполагать, что при расстекловывании становятся возможными и конформационные переходы элементарных звеньев целлюлозы, понижается энергия активации свободных ОН-групп. При этом вероятно повышение кислотности свободных от водородных связей гидроксилов [83]. Изменение сегментальной подвижности в присутствии воды происходит за счет индукционных эффектов при образовании водородных связей вода-целлюлоза с делокализацией электронной плотности [84]. Расчеты квантово-химическим полуэмпиричес-ким методом ППДП комплексов целлобиозы с водой и другими растворителями подтвердили [85], что при их взаимодействии атомы кислорода как целлобиозы, так и воды, участвующие в образовании водородной связи, получают дополнительный отрицательный заряд по сравнению с тем, который они имели до взаимодействия. Это закономерный результат переноса заряда при образовании комплекса. Установлено также, что возможно взаимодействие молекул воды не [c.379]

    На основании данных по сорбции воды целлюлозой, хитином и хитозаном [110] оценена их степень кристалличности, которая составила соответственно 60-70, 60 и 35-40%, т.е. у хитозана степень кристалличности наименьшая. Это подтверждают и данные по энтальпиям взаимодействия указанных полимеров с водой [111], на основании которых можно предполагать, что степень кристалличности уменьшается в ряду целлюлоза > хитин > хитозан. [c.388]

    Катионные полимеры прочно адсорбируются из воды на иоверхности кремнезема во всей области значений pH в отсутствие каких-либо полярных растворителей. Взаимодействие таких полимеров с кремнеземом рассматривалось в гл. 4 (см. лит. к гл. 4 [315—323]). В том случае, когда углеводородная цепь полимера содержит четвертичные аммониевые ионы на коротких боковых цепях, для такой полимерной молекулы появляется возможность располагаться плоско вдоль поверхности. В случае аммониевой соли поли (Ы-метилдиэтилэтилметакрилата) каждый сегмент катионного полимера покрывает площадь I—2 нм. Для покрытия больших по размеру частиц кремнезема с почти плоскими ио форме локальными участками иоверхности требуется меньшее количество полимера в расчете на единицу иоверхности. Такой полимер испытывает незначительную конфигурационную заторможенность на поверхности это подтверждается тем фактом, что предшествующая ему форма, третичный амин, адсорбируется с участием всех своих аминогрупп, обращенных в сторону плоской поверхности, превращая ее в гидрофобную [434]. Однако когда иосле этого на такую поверхность накладываются коллоидные частицы кремнезема, то некоторое число аминогруии разворачивается и адсорбируется уже на эт)1Х небольших частицах, удерживая их тем самым на плоской иоверхности. Когда избыточный золь кремнезема смывается, на поверхности еще сохраняется слой адсорбированных кремнеземных частиц, и вся система остается гидрофильной. [c.979]

    Эта реакция может быть проконтролирована потенциометри-чески с определением объема амина, вступившего во взаимодействие с полимером. С другой стороны, с анилином образуется плохо растворимый в воде карбамид, который может быть определен гравиметрически. Особенно часто применяют реакцию изоцианатных групп с аммиаком в ацетоновом растворе, т. е. аммиак по сравнению с другими аминами значительно быстрее реагирует с изоцианатной группой. Избыток аммиака титруют раствором хлористоводородной кислоты. [c.99]

    Важную группу соединений, обладающих односторонней растворимостью, представляют жидкие полимеры они растворяют обычные жидкости, но сами в них нерастворимы. Взаимодействие воды и углеводородов также можно рассматривать как пример односторонней растворимости. Данной проблеме посвящено много работ, общирный библиографический список приведен в API Te hni al Data Book (1970). Растворимость воды в углеводородах обычно можно рассчитать с точностью в пределах порядка величины, но сходимость оценок может выходить за пределы нескольких порядков величины, хотя числовые значения в обоих случаях невелики. Обычно для оценки растворимости используют довольно специфические уравнения. Например, растворимость воды в углеводородах и углеводородов в воде оценивается по уравнениям API  [c.390]

    Молекулярное взаимодействие между полимером и наполни-телс.м может протекать по различным механизмам. Так, между ак""ивными функциональными группами эпоксидной смолы и наполнителя происходит химическое взаимодействие с образованием прочных химических связей. Кроме того, наблюдается существование всего спектра физических связей — от ван-дер-ваальсовых до водородных, обусловливающих явления смачивания, адгезии и образования межфазных слоев [1, 3, 4, 6, 20, 5а]. Большое значение при этом имеет состояние поверхности наполнителя, которая, как было сказано выше, обычно покрыта адсорбированными молекулами воды и других соединений, затрудняющих смачивание и взаимодействие полимера с наполнителем. Несмотря на важность процессов межфазного молекулярного взаимодействия в наполненных полимерах, многие аспекты этих процессов еще мало исследованы, и в литературе существуют различные мнения, подробно рассмотренные в работах [3—5, 15, 59]. [c.87]

    Эндотермические кривые плавления мембран из влажного и частично высушенного ацетата целлюлозы, полученные методом дифференциальной сканирующей калориметрии (ДСК), демонстрируют различие в поведении мембран с разным содержанием влаги (рис. 4-9). Легко видеть, что пики плавления для изученных мембран (кривые 1, 2, 3) появляются при более низкой температуре (на 10—15 С), чем для чистой воды (кривая 4), причем каждый пик состоит из широкой и узкой компонент [98]. Танигучи и Хоригоме [98] объясняют такое поведение мембран на основе концепции о четырех состояниях воды 1) свободная вода (острый пик) 2) свободная вода, слабо взаимодействующая с полимером 3) связанная вода, содержащая соль и 4) связанная вода, не содержащая солей. [c.231]

    Основоположником крупнейшей научной школы по коллоидной химии в Советском Союзе является академик АН УССР А. В. Думанский. Ведущее место в ней занимают работы по коллоидному состоянию, химизму в коллоидных системах, их генезису, лиофильности и сольватации коллоидов и высокомолекулярных соединений. А. В. Думанским и его учениками развиты общие представления о механизме взаимодействия воды и других полярных и неполярных дисперсионных сред с поверхностью различных твердых фаз и макромолекул полимеров, дана термодинамическая трактовка процессов смачивания, подробно изучена связь между лиофильностью и диэлектрическими свойствами дисперсных систем. Освещена физико-химическая сторона процессов хлебопекарной, сахарной, торфяной и других отраслей промышленности, результаты которых обобщены в монографии [1]. [c.222]

    На образовании окрашенного тройного комплекса с медью и эозином основан способ определения в воде небольших количеств полиэтиленимина. Полиэтиленимин взаимодействует с гумусовыми веществами, белками и поверхностно-активными веществами, поливинилсульфокислотой, полиметакрилатом натрия, карбокси-метилцеллюлозой и другими водорастворимыми полимерами, содержащими кислотные группы. В результате этого взаимодействия возникают нерастворимые в воде полимер-полимерные комплексы (см. п. II.5). . . [c.37]

    С солями меди, цинка, кобальта, никеля, свинца и некоторых других металлов полиэтиленимин образует интенсивно окрашенные прочные. комплексные соединения. Он взаимодействует с белками, поливинил-сульфокислотой, полиметакрилатом натрия, карбоксиметилцеллюлозой и другими водорастворимыми соединениями, содержапдими кислотные группы, с образованием нерастворимых в воде полимер-полимерных комплексов. [c.127]

    Основные научные работы относятся к химии высокомолекулярных соединений. В начале своей научной деятельности (до 1928) занимался химией ацетиленовых соединений, осуществил синтез по-лиацетнлена. Был сторонником выдвинутой Г. Штаудингером макромолекулярной теории строения полимеров и способствовал ее утверждению, доказав существование соединений присоединения к целлюлозе гидроксидов щелочных металлов, воды и кислот. С помощью рентгеноструктурного анализа изучал (1931) различные кристаллические модификации целлюлозы и продукты присоединения к ней, фибриллярные белки. Исследовал межмолекулярное взаимодействие в полимерах и его влияние на когезию. Осуществил синтез волокнообразующего полиамида поликонденсацией 11-аминоундекановой кислоты. Установил (1948) линейную зависимость между температурами плавления полиамидов и числом межмолекулярных водородных связей. Синтезировал заме--щенные полиамиды трехмерной структуры (благодаря наличию ди-сульфидных мостиков), а также замещенные целлюлозы, например аминоцеллюлозу. [c.562]

    Обычно воду определяют либо непосредственно (используя полярные неподвижные жидкости или адсорбент типа угольных молекулярных сит), либо после химических презращений. Так, Найт и Вайс [246] в качестве реактора установили перед колонкой и-образную трубку длиной 0,3 м, заполненную измельченным (0,6—0,85 мм) карбидом кальция. В результате взаимодействия воды с карбидом кальция образуется ацетилен, который, отделяясь в колонке от других компонентов анализируемой смеси, регистрируется пламенно-ионизационным детектором (предел обнаружения может достигать 3-Ю %). Карбидом кальция можно заполнять и начальную секцию колонки. В литературе описаны и другие реакционно-хроматографические методики определения воды. По-видимому, непосредственное определение воды (при условии достаточной чувствительности катарометра) более надежно. Чаще всего используют колонки с пористыми полимерами (порапаком Р, полисорбом-1). На колонке с порапаком р вода элюируется перед пропаном, на колонке с угольным молекулярным ситом — перед метаном. [c.229]

    Эта реакция м. б. проконтролирована потенциометри-чески с определением объема- амина, вступившего во взаимодействие с полимером. С другой стороны, с анилином образуется плохо растворимая в воде мочевина, к-рая м. б. определена массовым (весовым) путем. Особенно часто применяют реакцию изоцианатных групп с аммиаком в ацетоновом р-ре избыток аммиака оттитровывают. [c.66]

    На основе полиуретанового клея КИП-Д разработан состав для герметизации затрубного пространства скважин. Полиуретановый клей КИП-Д синтезирован на основе сложного полиэфира и 4,4-дифинилметандиизоционата. КИП-Д обладает свойством полимеризоваться при наличии незначительных объемов воды. Вода является инициатором и катализатором реакции полимеризации, и при ее отсутствии полимер не отверждается. Процесс отверждения сопровождается увеличением объема за счет вспенивания массы углекислым газом, образующимся при взаимодействии воды с диизоцианатом. [c.515]

    Книга посвящена вопросам взаимодействия воды как с биоло 1 ическими, так и с синтетическими полимерами — вопросам, пред ставляющмм особую важность для химии, биологии, медицины. Рас . матриваются процессы жизнедеятельности, протекающие с участи ам природных макромолекул, биологическая активность которых отсутствие воды исчезает. В разделах, относящихся к синтетичес-лим полимерам, обсуждается влияние воды на технические и жсплу-атационные характеристики основных промышленных полимеров. [c.487]


Смотреть страницы где упоминается термин Взаимодействия вода полимер: [c.13]    [c.328]    [c.57]    [c.206]    [c.43]    [c.222]    [c.60]   
Вода в полимерах (1984) -- [ c.353 , c.355 ]




ПОИСК







© 2025 chem21.info Реклама на сайте