Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитозин спаривание с аденин

Рис. 2.11. Структура дезоксирибонуклеиновой кислоты (ДНК). Одиночные цепи ДНК соединены водородными связями. Слева-двойная спираль ДНК, вверху в виде модели из шариков, а ниже показано расположение оснований наподобие ступенек винтовой лестницы. Справа показано спаривание оснований - аденина с ТИМИНОМ и гуанина с цитозином. Пунктирными линиями представлены водородные связи. Рис. 2.11. <a href="/info/374961">Структура дезоксирибонуклеиновой кислоты</a> (ДНК). <a href="/info/307719">Одиночные цепи</a> ДНК соединены <a href="/info/917">водородными связями</a>. Слева-<a href="/info/32844">двойная спираль</a> ДНК, вверху в <a href="/info/1587484">виде модели</a> из шариков, а ниже показано расположение оснований наподобие ступенек <a href="/info/92644">винтовой лестницы</a>. Справа показано <a href="/info/98368">спаривание оснований</a> - аденина с ТИМИНОМ и гуанина с цитозином. Пунктирными линиями представлены водородные связи.

    Получить такие мутации, как замена ОС-пар на АТ-пары, можно простым химическим способом, а именно обработав нх азотистой кислотой (НМОг), которая осуществляет дезаминирование аминогрупп до гидроксильных групп. При этом цитозин превращается в урацил, который спаривается уже не с О, а с А. Таким образом, происходит по существу простое замещение или транзиция (разд. Г, 1). Под влиянием азотистой кислоты аденин превращается в гипоксантин, который (подобно гуанину) имеет тенденцию спариваться не с Т, а с С. (Гуанин также можно превратить в ксантин, однако такая замена не оказывает, по-видимому, существенного влияния на спаривание.) Многие другие химические модификации оснований также мутагенны. Так, например, к атому углерода в шестом положении в пиримидинах может присоединяться гидроксиламин, обладающий слабыми мутагенными свойствами. К наиболее сильным мутагенам относятся алкилирующие агенты. Эти соединения независимо от того, действуют ли они по или [c.289]

Фиг. 25. Спаривание аденина с тимином и гуанина с цитозином. Пунктирные линии указывают положение водородных связей. Углеродные атомы, отмеченные знаком f, относятся к кольцам сахара. Фиг. 25. <a href="/info/99846">Спаривание аденина</a> с тимином и гуанина с цитозином. Пунктирные линии указывают <a href="/info/722108">положение водородных связей</a>. <a href="/info/487451">Углеродные атомы</a>, отмеченные знаком f, относятся к кольцам сахара.
    Как было указано в предыдущем разделе, известны две реакции модификации, приводящие к совершенно отчетливому изменению характера комплементарного спаривания отдельных нуклеотидов в одноцепочечных полимерах. Так, молекулы информационной нуклеиновой кислоты, обработанные гидроксиламином при рЫ 5—6 или азотистой кислотой при pH 4—5, в целом не претерпевают никаких модификаций, за исключением изменений у 1— 3 цитозинов и аденинов (или только аденинов — в случае воздействия азотистой кислоты). Характер спаривания для этих оснований становится таким, как у урацила и гуанина соответственно [c.204]

Рис. 3.42. Спаривание оснований — аденина с тимином и гуанина с цитозином. Рис. 3.42. <a href="/info/98368">Спаривание оснований</a> — аденина с тимином и гуанина с цитозином.
    Экспериментальные данные о химическом составе ДНК удалось интерпретировать лишь после того, как была теоретически обоснована ее структура. В 1953 г., воспользовавшись исключительно четкими дифракционными картинами ДНК, полученными М. X. Ф. Уилкинсом, американский биолог Дж. Д. Уотсон и английский биофизик Ф. X. К. Крик предположили, что молекулы ДНК состоят из двух цепей, закрученных относительно друг друга в виде спирали таким образом, что через каждые 330 пм вдоль оси такой двойной спирали расположены остаток аденина или гуанина и остаток тимина или цитозина. При этом такие остатки образуют комплементарные пары аденин-ти-мин и гуанин-цитозин (рис. 15.21). Спаривание оснований по принципу комплементарности пояснено на рис. 15.20, из которого видно, что между аденином и тимином могут образовываться две, а между цитозином и гуанином три водородные связи. [c.456]


    Ф ИГ. 81. Спаривание аденина с тимином и гуанина с цитозином в двуспиральной [c.176]

    В каждой молекуле ДНК существует точное соответствие между числом аденина и тимина, с одной стороны, и гуанина и цитозина —с другой. Установлено, что углевод-фосфатная спираль ориентируется таким образом, что пиримидиновые и пуриновые основания направлены внутрь спирали. Водородные связи между основаниями, расположенными на двух молекулах друг напротив друга, способствуют укреплению двойной спирали точное спаривание маленького пиримидинового основания с большим пуриновым приводит к их равному соотношению в молекуле ДНК. Хотя водородные связи, несомненно, участвуют в стабилизации двойной спирали, прочность связывания двух цепей слишком велика, чтобы ее можно было объяснить исключительно этим взаимодействием. [c.321]

    ИЗ двух антипараллельных полинуклеотидных цепей. Наиболее важной особенностью предложенной структуры было спаривание оснований противоположных цепочек путем образования между ними водородных связей. Водородные связи (на рис. 2-21 они указаны пунктирными стрелками) могут образоваться лишь в том случае, если всюду вдоль структуры ДНК аденин образует пару с тимином (две водородные связи), а цитозин — с гуанином (три связи). Таким образом, последовательность нуклеотидов в одной цепи оказывается комплементарной, но не идентичной последовательности в другой цепи. Далее почти сразу же стало очевидно, что последовательность оснований в цепи ДНК содержит в себе закодированную генетическую информацию. Комплементарность двух цепей приводит к очень простому механизму репликации генов на протяжении всех клеточных делений. По этому механизму две цепи ДНК разделяются и вдоль каждой из них синтезируется новая комплементарная цепь, что дает в результате две молекулы ДНК, по одной на каждую из двух дочерних клеток. Принципиальную правильность этой схемы сейчас уже можно считать доказанной. [c.131]

    Г. Е. Фрадкин. После обработки фаговой популяции гидроксиламино.м последний при помощи диализа удалялся из вирусной суспензии. Следовательно, во время облучения гидроксиламин в среде отсутствовал. Предварительная модификация цитозиновых остатков в ДНК фага лямбда, вызываемая гидроксиламином (предположительно образование 4—5-дигидро-4-гидро-ксиламиноцитозина), действительно повышает радиочувствительность фаговой популяции в условиях преобладания непрямого эффекта излучения. Мы полагаем, что механизм повышения радиочувствительности сводится к нарушению специфического процесса комплементарного спаривания азотистых оснований во время репликации фаговой ДНК внутри клетки. В последних рабо тах Брауна, Филипса с соавторами химическими методами установлено, что цитозин, предварительно обработанный гидроксиламином, спаривается не с гуанином, а с аденином. Вследствие этого во вновь образованной ДНК происходят единичные замены гуанина на аденин. До тех пор, пока эти замены не выходят за пределы связанных серий однозначных кодонов, они не сказываются на информационных свойствах ДНК фага. Однако эти единичные замены понижают эффективность механизма, исправляющего ошибки включения, за счет уменьшения резерва однозначны кодонов или, иными словами, за счет уменьшения степени вырожденности структурного кода. Мы не видим большой сложности в этом объяснении, к которому мы сознательно прибегли для освещения возмол<ных молекулярных механизмов, лежащих в основе скрытых повреждений, связанных с тонкими сдвигами в величинах водородных сил в химически модифицированных азотистых основаниях. Как известно, сенсибилизация может обусловливаться уменьшением степени прочности первичной структуры ДНК вследствие лабилизации эфирно-фосфатных связей. Однако при использовании в качестве модифицирующего агента гидроксиламина этот второй механизм отсутствует, так как химическими исслг- [c.173]

    Такое спаривание оснований связями, длина которых показана на формуле, возможно только в случае двойной спирали со специфическим расположением оснований, когда цитозин в одной спирали стоит против гуанина в другой и связан с ним, или при аналогичном расположении тимина и аденина. Хроматография и спектроскопическое количественное определение пуриновых и пиримидиновых оснований облегчили точное изучение состава гидролизатов дезоксирибонуклеиновой кислоты из различных источников (Чаргафф , 1955). Некоторые из полученных результатов приведены в табл. 43. Эквивалентность аденина и тимина гуанину и цитозину, и в целом, пуринов пиримидинам является удивительным подтверждением гипотезы Уотсона и Крика. [c.721]

    Один виток каждой спирали содержит 10 нуклеотидов, диаметр двойной спирали около 2 нм. Азотистые основания обеих цепей находятся внутри двойной спирали и соединены друг с другом водородными связями. Связывание (спаривание) азотистых оснований осуществляется строго определенным образом. Аденин всегда соединяется с тимином, а гуанин - с цитозином, причем все без исключения основания одной цепи спарены с основаниями второй. Вследствие этого обе нуклеотидные цепи, образующие молекулу ДНК, имеют одинаковую длину и пространственно соответствуют друг другу. Если в каком-то месте одной цепи находится аденин, то обязательно напротив него в другой цепи присутствует тимин, а напротив гуанина всегда располагается цитозин. [c.16]


    Принцип комплементарных взаимодействий пар оснований (принцип спаривания оснований) лежит в основе построения и функционирования молекул ДНК. Аденин всегда образует пару с тимином, а гуанин с цитозином. Эти пары оснований называются комплементарными. Содержание остатков гуанина в любом фрагменте ДНК всегда в точности соответствует содержанию цитозина. Так же равны друг другу количества аденина и тимина. Две цепи ДНК удерживаются друг возле друга за счет комплементарных взаимодействий пар оснований и гидрофобных стэкинг -взаимодействий. Эти взаимодействия могут быть нарушены при нагревании, приводящем [c.35]

    На рис. 3.11 показано специфическое спаривание оснований по схеме Уотсона и Крика, согласно которой между аденином и тимином (или урацилом) образуются две водородные связи, а между гуанином и цитозином — три. Хотелось бы понять, почему образуются пары оснований именно с этим типом специфичности и, далее, допуская эту специфичность, почему в АТ- и СС-парах реализуется именно это конкретное расположение водородных связей. Ответ на эти вопросы, без сомнения, нетривиален. [c.295]

    Исследования кислотнощелочного титрования ДНК четко показали, что между основаниями существуют водородные связи. Более того, рентгеноструктурные исследования гидрохлоридов аде-нина и гуанина показали множественность таких водородных связей. Уотсон первоначально предложил модель спаривания оснований по принципу — подобное с подобным . В таких парах тимин (26) и гуанин (27) изображались в енольных таутомерных формах, как они и были представлены в стандартных учебниках того времени [31]. Такое гомо-спаривание (28) не могло реализоваться для оснований в их правильной кето-таутомерной форме . Как только Уотсон осознал необходимость использования гетероциклических оснований в их правильных кетоформах, у него в руках оказалась удачная возможность объяснить второе правило Чаргаффа спариванием аденина с тимином (29) и гуанина с цитозином (30). Эти структуры неизбежно приводят к такому же симметричному расположению гликозидных связей в каждой паре. Обе они имеют диадные оси в плоскости оснований, перпендикулярные оси спирали ДНК [32]. Основа вторичной структуры ДНК была установлена  [c.44]

    В молекуле ДНК азотистые основания связаны максимальным числом возможных водородных связей (рис. 51). Спаривание аденина с тимином осуш ествляется между атомами пуринового и пиримидинового оснований, а также между кислородом при Се пиримидинового ядра и азотом при Се пуриновою основания. Аналошчно гуанин с цитозином соединены путем образования водородных связей между атомами азота Кх пуринового и пиримидинового оснований и между кислородом при Се пуринового ядра и азотом КНа-группы при Сд пиримидинового кольца. В этом случае возможно, кроме того, образование третьей водородной связи между азотом при Са 1уанина и кислородом при Са цитозина. Таким образом, в молекуле ДНК существует упорядоченная жесткая система связей между полинуклеотидными цепями и последовательность оснований в одной цепи однозначно определяет последовательность оснований в другой цепи т. е. полинуклеотидные цепи комплементарны одна относительно другой. [c.418]

    При постулировании комплементарных отношений между четырьмя основаниями в ДНК Уотсон и Крик исходили из ограничений, которые накладывались на возможную последовательность оснований требованиями регулярной структуры. Однако они отдавали себе отчет в том, что обязательное спаривание аденина с тимином и гуанина с цитозином, с одной стороны, дает объяснение ранее загадочному правилу эквивалентности Чаргаффа, а с другой стороны, получает неожиданное подтверждение от него. Однако основное значение открытия спаривания оснований для последующего развития молекулярной генетики лежит не в объяснении этих любопытных данных, а в признании того, что полная молекула ДНК является самокомплементарной если наследственная информация записана в полинуклеотидной цепи в виде специфической последовательности четырех оснований, тогда каждая молекула ДНК несет два полных набора такой информации, хотя и написанной комплементарными буквами. Комментируя этот факт, Уотсон и Крик заканчивают свое первое письмо в Nature, в котором они описывают двойную спираль, утвержде- [c.177]

    Действительно, для каждого гетероциклического основания можно подобрать такой химический реагент, который избирательно взаимодействует только с атомами или группами, участвующими в образовании водородных связей при комплементарном спаривании нуклеотидных остатков. Так, например, кетоксаль избирательно взаимодействует с N1 и 2-NHj-rpynnoft гуанина, диметилсульфат (в определенных условиях)—с N1 аденина и N3 цитозина, карбо-диимид — с N3 урацила. Следовательно, если тог или иной.нуклео- [c.38]

    По мере развития новых методов исследования химического состава нуклеиновых кислот было установлено (Чаргафом), что, несмотря на очень сильное различие в относительном содержании разных оснований в различных ДНК, молярное соотношение между аденином и тимином, так же как и между цитозином и гуанином, во всех исследованных ДНК составляет приблизительно 1 1 [10]. На основе этих данных была выдвинута концепция о спаривании оснований в ДНК. Окончательные результаты были получены при исследовании вытянутых нитей ДНК методом реитгеноструктурного анализа. Из этих исследований следовало, что молекулы ДНК почти наверняка имеют строение спирали, состоящей [c.183]

    Спаривание оснований осуществляется по следующему механизму аденин образует пары с тимином (в молекуле РНК - с урацилом) за счет двух водородных связей, а гуанин - с цитозином за счет трех водородных связей (модель Уотсона-Крика). Д. Во и А. Рич [90] установили, что при совместной кристаллизации обычных мономерных производных Ade и Ura наблюдается образование пар A-U, однако они никогда не являются уотсон-криковскими. В этих комплексах роль акцептора водородной связи играет азот N(7) имидазольной части аде-нинового кольца. Эта структура известна как хугстеновская, или ими-дазольная. Расчет методом молекулярных орбиталей, выполненный Пульманом и соавторами [91] дает для пары аденин-тимин следующую последовательность структур в порядке убывания их стабильности имидазольная структура, обратная имидазольная структура, уотсон-криковская структура. В случае G- пар имеет место только уотсон- [c.235]

    Детальный анализ всевозможных вариантов образования водородных связей между основаниями показал, что в биспиральной молекуле ДНК основания уложены парами пурин из одной цепи и пиримидин из другой в соответствии с правилами Чаргаффа. Поскольку ориентация оснований на плоскости не является, очевидно, произвольной, и основания в полинуклеотидах представлены в лактамной форме, наиболее вероятными были признаны пары аденин-тимин и гуанин-цитозин. Этот способ спаривания получил в дальнейшем экспериментальное подтверждение. Избирательность взаимодействия пар А-Т и Г-Ц принято выражать термином комплементарность , а соответствующие азотистые основания называют комплементарными. Стабильность А-Т оснований обеспечивается двумя водородными связями, а пар Г-Ц - тремя, что в свою очередь определяется особенностями расположения функциональных групп азотистых оснований. Длина водородных связей между основаниями составляет около 0,3 нм. Таким образом, комплементарными оказываются не только отдельные основания, но и дезоксирибонуклеотидные цепи ДНК [c.108]

    РНК ТОЛЬКО С помощью молекулы-переносчика. Для этого служат транспортные РНК, которые находятся в рибосомах и имеют относительную молекулярную массу порядка 25 ООО. Молекулы транспортной РНК вследствие внутримолекулярного спаривания оснований имеют форму клеверного листа (рис. 3.4.2). На З -конце такого листа находятся неспаренные основания — последовательность цитозин-цитозин-аденин, на 5 -конце одно неспаренное основание, в основном гуанин. Связывание а-аминокислоты с транспортной РНК осуществляется на З -конце за счет карбоксильной группы аминокислоты. Три другие йеспаренные специфические основания транспортной РНК образуют триплет (антикодон), комплементарный кодону матричной РНК. После прикрепления транспортной РНК к информационной РНК (за счет взаимодействия кодон-антикодон) протекает перенос а-аминокислоты, связанной с транспорт ной РНК на растущую нолипептидную цепь. Эта цепь связана через транспортную РНК с рибосомой и остается там, пока соответствующий [c.667]

    Существенный элемент модели двойной спирали — принцип ком-плементарности, заключающийся в том, что спаривание оснований осуществляется строго специфично аденин всегда связывается с тимином, а цитозин — с гуанином (рис. 2.6). [c.81]

    КОМПЛЕМЕНТАРНОСТЬ, структурное соответствие. двух цепей нуклеиновых к-т, при к-ром аденину и гуанину в одной цепи соответствуют тимин (или урацил.) и-цитозин в другой (см. рис. 3 в сг. Нуклеиновые кислоты). Эти основания взаимод. друг с другом посредством- водородных связей между кето- и аминогруппами, так что образующчеся пары геометрически одинаковы. Специфич. спаривание оснований приводит к двухцепочечной структуре.ауклёиновой к-ты с антилараллельными цепями (двойная. спираЛь). Комплементарные участки могут встречаться- в составе одной цепи нуклеиновой к-ты, что может приводить к образованию внутримол. дуплексных структур. В более широком смысле К.— структурное соответствие любых молекул или участков молекул, обусловливающее образование специфич. комплексов, напр, фермент — субстрат, антиген — антитело. [c.270]

    Спаривание оснований в ДНК. В препаратах ДНК, вьщеленных из двух неидентифици-рованных видов бактерий, содержание аденина составляет соответственно 32 и 17% общего содержания оснований. Какие относительные количества аденина, тимина и цитозина вы предполагаете найти в этих двух препаратах ДНК Какие вы [c.891]

    Реакции присоединения и отщепления протона. Протонирование ДНК в растворе происходит при значениях pH, отличающихся от тех, при которых наблюдается протонирование в том же растворителе свободных оснований и нуклеотидов. Если постепенно снижать pH, начиная от нейтральных значений, то первыми протонируются аденин и цитозин между 5 и 4), а затем гуанин (pifo 3). Формулы, приведенные на фиг. 53, показывают, что при первом акте протонирования этих оснований как характер спаривания оснований, так и размеры спирали остаются но существу неизменными более того, монопротонированные пары [А(Н ) — Т] и в особенности [Г — Ц(Н )] могут обладать даже большей стабильностью. Протонирование же гуанина создает условия для мощного отталкивания зарядов внутри одной и той же пары оснований, которое может привести к глубоким [c.147]

    Уотсон и Крик выдвинули идею о специфическом спаривании на основании имевшихся в их распоряжении данных о нуклеотидном составе различных ДНК. Из этих даных следовало, что отношения аденин тимин и гуанин цитозин близки к единице. Уотсон и Крик дали наиболее вероятную схему образования пар. [c.217]

    О том, что спаривание происходит только таким образом, свидетельствуют и аналитические данные по содержанию оснований в молекулах ДНК (см. табл. 3). Мы унхе отмечали, что в самых разнообразных молекулах ДНК количество аденина всегда равно количеству тимина и ко.личество гуанина равио ко.тичеству цитозина. Эти пары оснований являются дополнительными, комплементарными друг к другу. Поэтому говорят, что молекула ДНК слагается из двух комплементарных, или дополнительных друг к другу, цепей. [c.56]

    Как основания соединяются в пары с помощью водородных связей, показано на рис. 3.42. Аденин спаривается с тимином, а гуанин — с цитозином АТ-пара соединяется двумя водородными связями, а ГЦ-пара — тремя. Уотсон попытался представить себе такой порядок спаривания оснований и позже вспоминал об этом так От радости я почувствал себя на седьмом небе, ибо тут я уловил возможный ответ на мучившую нас загадку почему число остатков пуринов в точности равно числу остатков пиримидинов Уотсон увидел, что при таком сочетании основания оказываются очень точно подогнанными друг к другу и что общий размер и форма двух этих пар оснований одинаковы, так как обе пары содержат по три кольца [c.143]

    Поскольку 2-аминопурин, 5-бромурацил и азотистая кислота индуцируют как прямые, так и обратные мутации, с помощью этих мутагенов нельзя получить лищь транзиции G -> АТ или АТ -> G . Гидроксил-амин, напротив, воздействует только на цитозин, переводя его в форму, способную к спариванию с аденином (рис. 20.7). Это приводит к направленным мутациям G ->AT. Гидроксиламин не способен индуцировать обратные мутации, однако такие мутации могут индуцироваться мутагенами, действующими в обоих направлениях. Описанный механизм действия 2-аминопурина подтверждает анализ аминокислотных замен белка триптофансинтетаза А Е. oli, вызываемых 2-АП-индуцированными реверсиями специфических мутаций (рис. 20.8). [c.13]

    Специфическое спаривание комплементарных нуклеотидов сыграло, видимо, решающую роль в возникновении жизни. Рассмотрим, например, полинуклеотид, подобный РНК и содержащий основания урацил (и), аденин (А), цитозин (С) и гуанин (С). Благодаря комплементарному спариванию оснований - АсИиОсС - при добавлении РНК к смеси активированных нуклеотидов в условиях, благоприятствующих полимеризации, синтезируется новая молекула РНК, последовательность нуклеотидов которой комплементарна последовательности нуклеотидов в исходной РНК Таким образом, новые молекулы представляют собой как бы слепок исходной молекулы, каждому А которой соответствует и в копии и г. д. На первой стадии информация, содержащаяся в последовательности исходной цепи РНК, сохраняется в новообразующихся комплементарных цепях. На второй стадии копирование с использованием комплементарной цепи в качестве матрицы восстанавливает исходную последовательность (рис. 1-5). [c.14]

    Еще до того, как была установлена эта структура, было показано, что число пуриновых и пиримидиновых оснований в ДНК одинаково и, более того, число остатков аденина (А) равно числу остатков тимина (Т), а число остатков гуанина (С) равно числу остатков цитозина (С). Структура Уотсона—Крика дает объяснение этому сделанному ранее наблюдению. Основания противоположных цепей занимают строго фиксированные положения, что дает им возможность образовывать водородные связи. Этот процесс строго специфичен и приводит к тому, что Л может взаимодействовать только к Т, а С — с С, поэтому цепи являются взаимно комплементарными. Таким образом, если,двигаясь от 5 - к 3 -концу одной цепи, мы встречаем последовательность АССТАССТ..., то в противоположной цепи мы найдем последовательность (прочитанную от 3 - к 5 -концу) ТСС-АТССА (принято, однако, нумерацию в последовательности вести от 5 - к 3 -концу, так что последние восемь букв следует записать как. .. АССТАССТ). Это комплементарное спаривание оснований между цепями оказывается возможным потому, что ферментативный синтез происходит путем специфического достраивания на одной цепи второй, комплементарной к ней, а не воспроизведения последовательности оснований в этой цепи. Следует подчеркнуть, что, как было показано, в различных экспериментальных условиях структура ДНК хорошо соответствует уотсон-криковской, наблюдаемой в волокнах. [c.294]


Смотреть страницы где упоминается термин Цитозин спаривание с аденин: [c.82]    [c.328]    [c.78]    [c.371]    [c.111]    [c.551]    [c.901]    [c.60]    [c.217]    [c.293]    [c.315]    [c.418]    [c.557]    [c.54]    [c.40]   
Биохимия Т.3 Изд.2 (1985) -- [ c.81 , c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Аденин

Цитозин



© 2025 chem21.info Реклама на сайте