Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метионин, замены

    Питательные свойства БРП обусловлены большим содержанием белков, которые находятся в них в наиболее концентрированном виде. Аминокислотный состав белков самых распространенных БРП, таких, как белковые продукты сои и конских бобов (два важнейших, если не единственных источника растительного белка, используемых во Франции в промышленном масштабе), делает их высокоценными продуктами питания. Ранее уже говорилось о том, что эти БРП, впрочем, как и большинство белков животного происхождения, характеризуются некоторым дефицитом метионина. Однако, как показали многочисленные исследования, проведенные в разных странах, если технология приготовления БРП подобрана правильно, замена части белков мяса этими БРП дает смесь белков, близкую по своей питательной ценности к натуральному мясу. [c.633]


    Была установлена стереохимия различных аминокислот путем замены серы на водород. Из (-f)-метионина, например, была получена (—)-а-аминомасляная кислота таким путем, при котором не могло произойти обращения конфигурации у асимметрического центра [85]. [c.390]

    Для гюлучсния дополнительной информации о возможном механизме включения селена в органические внутриклеточные соединения (например, метионин и цисте-ин) проведена замена сульфата аммония на хлорид аммония. Замена соли проводилось с учетом количественного сохранения концентрации иона аммония в исходной питательной среде. [c.168]

    Ц.- кодируемая заменимая а-аминокислота. Ц. входит в состав белков и нек-рых пептидов (напр., глутатиона). Особенно много Ц. в кератинах. Биосинтез Ц. в растениях и микроорганизмах осуществляется тутем замены ОН на 8Н в серине. В организме животных образуется из метионина, распадается до цистамина. Характерная особенность Д.- его способность подвергаться в составе молекулы белка самопроизвольному окислению с образованием остатков цистина. Ц. участвует в биосинтезе цистина, глутатиона, таурина и кофермента А. [c.388]

    Аминоацилаза строго специфична к структуре только ацильной части субстрата, поэтому одна и та же установка с иммобилизованным ферментом используется для получения различных аминокислот, в том числе L-валина, L-метионина, L-фенилала-нина и L-триптофана. Время полуинактивации иммобилизованного энзима составляет 65 суток на японских предприятиях он используется без замены более 8 лет и обеспечивает снижение стоимости производства аминокислот на 40 % по сравнению с технологией, где применяются свободные молекулы фермента. [c.96]

    Превращение полученного химическим синтезом гастрина I в гастрин II можно осуществить обработкой efo комплексом пиридин — SO3 прн pH 10. Но прн такой обработке могут протекать различные процессы в аминокислотных остатках в области 14—17 (важной для проявления биологической активности), ведущие к инактивации пептида, например замешение в триптофановом кольце, окисление метионина в его S-окснд, дезамидирование и т. д. Для уменьшения этих изменений Met может быть заменен без уменьшения биологической активности на Leu >5. Это наблюдение имеет большое практическое значение, потому что [Ьеи ]гастрнн I человека, не имея остатка метионина, более устойчив к окислению и обладает повышенной стабильностью при хранении. Замены в участке 1—13 не оказывают какого-либо влияния на биологическую активность. Гастрины нз других организмов, отличающиеся от человеческого этим участком, также проявляют биологическую активность. [c.276]


    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    Блох [67] установили, что лишь очень небольшое количество азота мочевины, введенной с пищей, включается в аммиак мочи и в белки. Однако в опытах с С -мочевиной было найдено, что мочевина быстро превращается в углекислоту [68, 69]. Расщепление мочевины до углекислоты и аммиака катализируется бактериями, присутствующими в желудке, кишечнике и других частях тела (например, в верхних дыхательных путях) [69]. Добавление заменимых аминокислот, ионов аммония или мочевины к рациону, состоящему из 10 незаменимых аминокислот, дает лучший эффект, чем повышение количества самих незаменимых аминокислот. Из этого можно заключить, что незаменимые аминокислоты в общем медленнее превращаются в продукты обмена, необходимые для роста [70] следовательно, возможны такие экспериментальные условия, при которых ионы аммония будут оказывать более благоприятное влияние на рост, чем смесь незаменимых аминокислот. Как упомянуто выше, некоторые аминокислоты, необходимые для обеспечения роста и азотистого равновесия, могут быть частично замещены заменимыми аминокислотами. Так, у молодых крыс цистин может покрывать от /е ДО /з потребности в метионине [30, 31], а тирозин может восполнить около половины потребности в фенилаланине [32]. Возможность замены метионина гомоци-стеином зависит от наличия в пище витамина В12 и фолевой кислоты или донаторов метильных групп. Возможно, что будут найдены такие условия, при которых рост будет поддерживаться и в отсутствие некоторых других незаменимых аминокислот. Результаты исследований, в которых определялись рост и азотистое равновесие, свидетельствуют лишь о том, что данные функции не обеспечиваются процессами синтеза in vivo. [c.127]

    Быстрый круговорот азота у человека, животных и растений был также подтвержден Шенгеймером при помощи дейтерия. При введении в организм мыши тяжелой воды уже через три дня все аминокислоты, опять-таки кроме лизина, содержали дейтерий в связях С—И, куда он не мог входить путем простого изотопного обмена с водой. В этих исследованиях также было найдено, что дейтерий особенно быстро появляется в глютаминовой кислоте. За десять дней в ней замена водорода дейтерием достигает 40% от равномерного распределения, а в глютаминовой кислоте печени этот процесс идет еще гораздо быстрее. Внедрение дейтерия из тяжелой воды в аминокислоты легко понять в свете рассмотренного на стр. 378 механизма энзиматического переаминирования, по которому весь а-водород аминокислоты должен заместиться водородом из воды. Из скорости усвоения аминокислотами и протеинами вводимого дейтерия и тяжелого азота можно было вычислить, что в печени крыс половина белков обменивается за 5—7 дней, в белках кровяной плазмы собак за 1—2 недели, но гораздо медленнее в белках мышц. Азобактерии уже за 15 мин. обменивают 8% азота глютаминовой кислоты в своих белках на меченый азот из питательной среды. При кормлении метионином, меченным радиоактивной серой, последняя также вскоре появляется в ряде белков тканей и органов, что также подтверждает быстрое обновление аминокислот. [c.496]


    За последние несколько лет были сделаны большие успехи в изучении люминесценции бактерий. Особое внимание уделялось исследованию экстрактов, выделенных из бактериальных клеток. В ранних работах занимались главным образом вопросом о влиянии изменения свойств окружаюш,ей среды—питательных веществ, осмотических свойств и pH—на люминесценцию и определением отношения интенсивностей люминесценции и дыхания. Еще в 1938 г. Дудоров [7] показал, что добавление рибофлавина усиливает люминесценцию бактерий, не оказывая заметного действия на процесс дыхания. Его работа в течение многих лет оставалась незамеченной, и при исследовании живых бактерий в основном занимались вопросом о потребности бактерий в аминокислотах и сахаре. На этом этапе исследований один из наиболее поразительных экспериментальных результатов состоял в том, что источник азота, введенный в среду, оказывает решающее влияние на величину отношения скорости роста к интенсивности люминесценции бактерий [13]. Для A hromoba ter fis heri было показано, что если принять в качестве стандартного значения величину отношения, полученную при оптимальных условиях роста в присутствии солей аммония, то замена последних гуанином, глутаминовой кислотой или серином приводит к возрастанию этого отношения однако оно уменьшается, т. е. интенсивность люминесценции возрастает быстрее интенсивности дыхания при добавлении в среду метионина с гистидином или с лизином. Аналогичные наблюдения были проделаны и другими исследователями, которые установили, что присутствие в среде смеси метионина с другими менее существенными аминокислотами усиливает люминесценцию. В гл. VIH и IX приводятся другие примеры важной роли, которую играют соединения серы в процессах, связанных с излучением. [c.174]

    Степень термостабильности белка и его поведение при денатурации зависит от свойств доменов, которые связаны с участками повышенной плотности в глобулярных белках (Макаров, 1996). Распределение зарядов и дипольных моментов в пространстве глобул влияет на размеры кооперативных областей — энергетических доменов. Перераспределение зарядов под действием условий среды приводит к изменению размера домена и свойств белка. Путем точечных мутаций можно заменять отдельные аминокислоты белка и тем самым влиять на распределение зарядов в критических точках, ответственных за термостабильность. Так, замена гистидина в тетрацитохроме в лиганде атома железа на остаток метионина привела к направленной модификации и увеличению термостабильности белка за счет связи железа с серой метионина. [c.182]

    Однако в трех случаях — замена аланниа на лизни (ГЦУ II ААА), серпна на глутамин (УЦУ п ГАА) н гли-цинина на метионин (ГГУ и АУГ) — такое объяснение не подходит. В этих случаях единственно возможное объяснение замен связано с генетической регуляцией, с репрессией одних локусов генома и депрессией других при изменении пролиферативной активности тканей. Удивляет малый процент таких случаев (3,5%)  [c.99]


Смотреть страницы где упоминается термин Метионин, замены: [c.200]    [c.366]    [c.138]    [c.210]    [c.718]    [c.178]    [c.216]    [c.273]    [c.223]    [c.247]    [c.288]    [c.182]    [c.108]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Метионин



© 2025 chem21.info Реклама на сайте