Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обратный осмос и ультрафильтрация

    ОБРАТНЫЙ ОСМОС И УЛЬТРАФИЛЬТРАЦИЯ [c.3]

    По способу укладки мембран аппараты для обратного осмоса и ультрафильтрации подразделяют на четыре основных типа аппараты типа фильтрпресс с плоскокамерными фильтрующими элементами аппараты с трубчатыми фильтрующими элементами аппараты с рулонными или спиральными фильтрующими элементами аппараты с мембранами в виде полых волокон. В такой последовательности они будут здесь рассмотрены. [c.115]


    Обратный осмос и ультрафильтрация.— М. Химия, 1978, —352 с., ил. [c.4]

    Автор далек от мысли, что все аспекты обратного осмоса и ультрафильтрации полностью раскрыты. Отнюдь нет. Учитывая большой интерес к рассматриваемой проблеме специалистов различного профиля — технологов, биологов, конструкторов и других, а также сравнительно небольшой объем книги, автор считал своей главной задачей, не загромождая книгу частными вопросами, изложить материал в форме, доступной для самого широкого круга читателей. Для более детального ознакомления с интересующими читателя вопросами следует воспользоваться списком основной литературы, как правило, обзорного характера. [c.9]

    Как и всем мембранным методам, обратному осмосу и ультрафильтрации свойственно явление концентрационной поляризации, которое заключается в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса растворителя через мембрану. В результате происходит падение проницаемости и селективности, сокращается срок службы мембран. Для уменьшения вредного влияния концентрационной поляризации необходимо турбулизовать прилегающий к поверхности мембраны слой жидкости, чтобы ускорить перенос растворенного вещества в ядро разделяемого раствора. Этого добиваются применением в лабораторных установках магнитных мешалок и вибрационных устройств, а в промышленных условиях увеличением скорости протекания жидкости вдоль мембраны и использованием различного рода турбулизаторов. [c.18]

    За рубежом, и прежде всего в США, Японии, Англии, Франции, ФРГ, обратный осмос и ультрафильтрация получили широкое промышленное развитие для обработки воды и водных растворов, очистки сточных вод, очистки и концентрирования растворов высокомолекулярных веществ. В настоящее время в этих странах действует несколько тысяч обратноосмотических и ультрафильтрационных установок производительностью от 1—3 до 17 000 м /сут (например, на одном из металлургических заводов в Японии для очистки сточных вод). В США в 1981 г. должна вступить в строй обратноосмотическая (в сочетании с электродиализом) опреснительная установка производительностью около 38 000 м /сут. С пуском этой установки, а также ряда других (см. главу VI) около половины опресняемой на нашей планете воды будет обрабатываться мембранными методами. [c.8]

    Наряду с другими мембранными методами разделения жидких систем, широкое распространение в промышленности и лабораторной практике получили обратный осмос и ультрафильтрация. [c.14]


    Накопленный за последние годы опыт создания и эксплуатации промышленных установок, а также обширный экспериментальный материал по исследованию обратного осмоса и ультрафильтрации позволяют автору критически рассмотреть достоинства и недостатки этих методов, сопоставить их с другими методами разделения, а также описать физико-химическую сущность и основные закономерности обратного осмоса и ультрафильтрации, что позволило разработать принципы расчета мембранных процессов и аппаратов. [c.9]

    Совместное рассмотрение в данной книге обратного осмоса и ультрафильтрации не случайно, так как эти процессы имеют много общего. Для их осуществления, например, используются полупроницаемые мембраны, приготовленные из одного и того же материала (но имеющие различные размеры пор). Аналогичны и аппараты для проведения этих процессов. Однако механизм процессов обратного осмоса и ультрафильтрации, как будет показано в гл. IV, различен. [c.14]

    Обратный осмос и ультрафильтрация имеют принципиальное отличие от обычной фильтрации. Если при фильтрации продукт откладывается в виде кристаллического или аморфного осадка на поверхности фильтра, то при обратном осмосе и ультрафильтрации образуется два раствора, один из которых обогащен растворенным веществом. В этих процессах накопление растворенного вещества у поверхности мембраны недопустимо, так как приводит к резкому снижению селективности и проницаемости мембраны. [c.17]

    Важным преимуществом обратного осмоса и ультрафильтрации является простота конструкции установок, которые включают два основных элемента устройство для создания давления жидкости и разделительную ячейку с закрепленными в ней полупроницаемыми мембранами, а в крупных промышленных установках — многосекционный аппарат, обеспечивающий необходимую поверхность мембран. Одним из достоинств разделения обратным осмосом и ультрафильтрацией является осуществление этих процессов при температуре окружающей среды, что имеет исключительно важное значение при разделении нетермостойких растворов. [c.17]

    Однако важнейшие преимущества этих методов, перекрывающие отмеченные выше недостатки, позволяют сделать заключение о несомненной их перспективности. Это подтверждается не только большим потоком научных публикаций и патентов по обратному осмосу и ультрафильтрации [1 —12], но и накопленным экспериментальным материалом, полученным как на лабораторных, так и на опытно-промышленных и промышленных установках [4—12]. [c.18]

    Трубчатый фильтрующий элемент представляет собой сменный и обычно неразъемный узел аппаратов для проведения обратного осмоса и ультрафильтрации, состоящий из полупроницаемой мембраны и дренажного каркаса (рис. П1-16). Дренажный каркас, как правило, вы- [c.123]

    Для расчета движущей силы процесса обратного осмоса, а в ряде случаев и ультрафильтрации (например, при большой концентрации высокомолекулярных соединений) необходимо знание осмотического давления раствора. Вместе с тем, в литературе отсутствуют обобщенные данные по расчету осмотического давления, а имеющиеся справочные значения осмотического давления или осмотических коэффициентов не систематизированы и не собраны воедино. Все это затрудняет проведение расчетов мембранных аппаратов и систем для осуществления процессов обратного осмоса и ультрафильтрации. [c.19]

    Среди аппаратов для проведения процессов обратного осмоса и ультрафильтрации особое место занимают аппараты с фильтрующими элементами, основной частью которых являются мембраны в виде полых [c.156]

    Поскольку для проведения процессов обратного осмоса и ультрафильтрации применяются исключительно пористые мембраны, то в данной книге все аспекты теории и практики обратноосмотических и ультрафильтрационных процессов рассматриваются только относительно пористых мембран. [c.47]

    Современные представления, лежащие в основе капиллярно-фильтрационной модели механизма полупроницаемости (см. стр. 203), позволяют сделать вывод о возможности получения пористых селективных мембран для обратного осмоса и ультрафильтрации практически из [c.47]

    Таким образом, технология изготовления пропитанных мембран открывает широкие возможности получения разнообразных полупроницаемых мембран для проведения обратного осмоса и ультрафильтрации. [c.76]

    Знание структуры полупроницаемых мембран имеет большое значение при решении задач разработки количественной теории мембранных процессов и их успешной реализации. Поскольку пористые мембраны наиболее перспективны для проведения процессов обратного осмоса и ультрафильтрации, то целесообразно подробнее рассмотреть основные методы определения пористости, размера и распределения пор для этого типа мембран. [c.91]

    За последние годы мембранные процессы все более проникают в различные отрасли народного хозяйства. Разнообразие областей применения (в медицине —для очистки крови, в нефтепереработке —для обезвоживания масел подробнее см. главу VI) и задач, которые решаются или могут быть решены с помощью обратного осмоса и ультрафильтрации (разделение, очистка, концентрирование и т. д.), определяет необходимость создания многочисленных вариантов аппаратурно-тех-нологического оформления этих процессов, на основе широкого арсенала мембранных аппаратов, полупроницаемых мембран, конструкционных материалов. [c.109]


    К исследованию этих методов, выявлению возможности их применения для решения различных новых практических задач подключается все большее число исследователей и практиков, которые ранее этой проблемой не занимались. Кроме того, при расчете и проектировании обратноосмотических и ультрафильтрационных промышленных аппаратов и установок для получения исходных данных часто необходимо, как это будет показано в главе V, проведение предварительных экспериментов иа лабораторных, а иногда и на модельных установках. В настоящее время в мире функционирует несколько тысяч установок обратного осмоса и ультрафильтрации различной производительности — от нескольких литров до сотен кубометров в час. В ближайшее время в нашей стране и за рубежом следует ожидать резкого увеличения как числа, так и производительности таких установок, используемых в различных технологических процессах. [c.109]

    К аппаратам промышленных масштабов предъявляются требования, определяемые условиями их изготовления и эксплуатации. Прежде всего, промышленные аппараты для осуществления мембранных процессов, в том числе и для обратного осмоса и ультрафильтрации, должны иметь большую рабочую поверхность мембран в единице объема аппарата. Они должны быть простыми в сборке и монтаже ввиду необходимости периодической смены мембран. При движении жидкости по секциям или элементам аппарата она должна равномерно распределяться над мембранной поверхностью и иметь достаточно высокую скорость течения для снижения влияния концентрационной поляризации (см. стр. 170). При этом перепад давления в аппарате должен быть по возможности небольшим. Кроме того, необходимо выполнение всех требований, связанных с работой аппаратов при повышенных давлениях обеспечение механической прочности, герметичности и т. д. Создать аппарат, который в полной мере удовлетворяет всем требованиям, по-видимому, невозможно. Поэтому для каждого конкретного процесса разделения следует подбирать конструкцию аппарата, обеспечивающую наиболее выгодные условия проведения именно этого процесса. [c.115]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]

    Значительный технологический эффект может быть получен от воздействия на мембранные системы таких внешних факторов, как электрические и магнитные поля, ультразвуковые волны и т. д. Более того, изучение влияния этих факторов на характеристики процесса разделения позволит полнее вскрыть механизм обратного осмоса и ультрафильтрации. [c.169]

    Применение обратного осмоса и ультрафильтрации [c.277]

    Понятно, что изучение явления концентрационной поляризации, оценка его влияния на процесс обратного осмоса и ультрафильтрации и определение возможных путей снижения этого влияния представляет важную задачу при проектировании мембранных установок. [c.170]

    Концентрация растворенных веществ в разделяемом растворе является одним из основных факторов, определяющих не только характеристики процессов обратного осмоса и ультрафильтрации [158], но и саму возможность использования этих методов разделения. [c.188]

    Исключительный интерес представляет применение обратного осмоса и ультрафильтрации для очистки промышленных и бытовых стоков, опреснения морских и солоноватых вод. Следует отметить, что эти процессы при условии создания достаточной промышленной базы для изготовления мембран, соответствующих материалов и мембранных аппаратов займут лидирующее положение в решении перечисленных выше важнейших технических и экологических проблем. [c.277]

    Поэтому правильный выбор рабочего интервала концентраций является важнейшей предпосылкой нормального функционирования установок обратного осмоса и ультрафильтрации. [c.188]

    В предыдущих разделах в той или иной степени влияние природы растворенного вещества на характеристики процесса разделения уже рассматривалось. К этому вопросу мы еще вернемся, когда будем анализировать механизм разделения обратным осмосом и ультрафильтрацией. Вместе с тем, накопленный к настоящему времени эксперимен- [c.191]

    Полный расчет установок обратного осмоса и ультрафильтрации включает в себя технологический, гидравлический и механический расчеты. В ряде случаев, если используются системы подогрева или охлаждения растворов, необходим также тепловой расчет. [c.223]

    В этом разделе рассмотрены методы расчета основных технологических параметров процессов разделения жидких смесей обратным осмосом и ультрафильтрацией, значения которых необходимо знать при расчете мембранных аппаратов, а также элементы расчета этих аппаратов. [c.224]

    Если пренебречь продольной диффузией в потоке, которая, как отмечалось выше, почти не оказывает влияния на процессы обратного осмоса и ультрафильтрации, то описание процесса может быть выражено с помощью следующей системы уравнений  [c.231]

    Аппараты с мешалками используются в основном при лабораторных исследованиях обратного осмоса и ультрафильтрации (см. стр. ПО). Однако в ряде специальных случаев подобные аппараты могут найти применение и в промышленности, если по каким-либо причинам необходимо интенсивное перемешивание разделяемого раствора, например при использовании аппарата в качестве реактора с отводом одного из продуктов реакции через мембрану и т. п. [c.238]

    До недавнего времени разделение жидких гомогенных смесей осуществлялось только с помощью таких широко известных процессов, как перегонка, адсорбция, экстракция, кристаллизация, дистилляция и т. п. Однако эти методы имеют ряд существенных недостатков — сложность и громоздкость аппаратуры и технологических схем, большие эксплуатационные затраты, необходимость использования высоких или очень низких температур и т. д. Кроме того, в ряде случаев названные методы разделения оказываются вообще непригодными. Подобных недостатков в значительной мере лишены мембранные методы разделения жидких смесей, в том числе обратный осмос и ультрафильтрация, которые в настоящее время завоевывают самые широкие сферы применения. Обратный осмос и ультрафильтрация часто не только более дешевы, чем такие методы, как перегонка, экстракция, выпаривание и др., но н способствуют решению задач по улучшению качества продукции и использованию сырья, материалов, топлива, электрической и тепловой энергии, а также создают новые возможности использования вторичных сырьевых ресурсов и отходов. [c.277]

    Глава VI. Применение обратного осмоса и ультрафильтрации [c.280]

    Метод расчета эмпирических корреляций по влиянию концентрации растворенных веществ и гидродинамических условий нашел развитие в работах Ю. И. Дытнерского и Р. Г. Кочарова и базируется на экспериментально изученных зависимостях селективности и проницаемости от концентрации растворенных веществ и гидродинамических условий в аппаратах обратного осмоса и ультрафильтрации [186—188]. Во всех случаях предполагается, что процесс проводится при постоянном давлении и постоянной температуре. [c.230]

    В данной главе рассматриваются вопросы состояния и перспектив применения обратного осмоса и ультрафильтрации в различных областях народного хозяйства. При этом, вследствие сравнительно небольшого объема книги, не ставится задача перечисления всех известных случаев использования этих методов. Подробнее они рассмотрены в работе [12]. [c.277]

    Сравнение обратного осмоса и ультрафильтрации другими методами разделения, [c.278]

    Ниже рассмотрены возможности обратного осмоса и ультрафильтрации и области их практического применения. [c.279]

    В химической и нефтехимической промышленности обратный осмос и ультрафильтрация могут с успехом применяться для решения следующих проблем  [c.279]

    Вопросы водоподготовки и очистки сточных вод (в том числе для химической и нефтеперерабатывающей промышленности) бу дут рассмотрены ниже (см. стр. 294). Перечень примеров применения обратного осмоса и ультрафильтрации может быть значительно расширен, по [c.285]

    Расчеты и накопленный фактический материал показывают, что применение полупроницаемых мембран может дать значительный экономический эффект в сложившихся традиционных производствах, открывают широкие возможности для создания принципиально новых, простых и малоэнергоемких технологических схем (особенно при сочетании с такими широко распространенными методами разделения, как дистилляция, адсорбция, экстракция и пр.), для улучшения качества продукции и позволяет использовать различные отходы. А тот эффект, который может дать широкое применение обратного осмоса и ультрафильтрации для решения, например, важнейшей технической и экологической проблемы современности — защиты окружающей среды от загрязнений, даже трудно переоценить. [c.8]

    Мембранология, таким образом, стала важнейшей научной дисциплиной, призванной разрешать многие вопросы не только биологии, но и техники. Поток информации по различным вопросам мембранологии (биологической и технической) как в СССР, так и за рубежом стремительно возрастает. Так, только по обратному осмосу и ультрафильтрации публикуется 350—400 работ в год. Нет сомнения в том, что совместные усилия ученых в этой области должны в ближайшем будущем привести к становлению мембранологии как самостоятельного научного направления. [c.9]

    Обратным осмосом и ультрафильтрацией, как отмечалось выше (стр. 180), можно разделять не только растворы электролитов, но также и смеси органических веш,еств. Примеры подобного разделения приведены на стр. 279— 284. Разделение растворов органических веществ обратным осмосом, влияние на продесс внешних факторов [(рис. IV-7), (IV-11) —(IV-13) и др.] могут быть объяснены с позиций капиллярнофильтрационной модели механизма селективной проницаемости. [c.217]


Смотреть страницы где упоминается термин Обратный осмос и ультрафильтрация: [c.4]    [c.9]    [c.125]    [c.284]   
Смотреть главы в:

Химические и термические методы обработки воды на ТЭС -> Обратный осмос и ультрафильтрация

Физические и химические методы обработки воды на ТЭС -> Обратный осмос и ультрафильтрация


Основные процессы и аппараты химической технологии (1983) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Осмос

Осмос обратный

Ультрафильтрация



© 2024 chem21.info Реклама на сайте