Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомогенное химическое равновесие в жидкой фазе

    Обратимся к применению закона действующих масс к гетерогенным реакциям. При термодинамическом выводе з. д. м. считалось, что химическое равновесие устанавливается в гомогенной (газовой) среде. Чтобы перенести это условие на гетерогенные химические равновесия, необходимо рассматривать равновесные соотношения между парциальными давлениями веществ также в газовой фазе. Парциальные давления газообразных участников реакции при постоянной температуре могут меняться в соответствии с законом действующих масс. Что же касается парциального давления каждого из твердых или жидких реагирующих веществ, то оно является величиной постоянной, как и постоянно давление насыщенного пара этого вещества при заданной температуре. Эти постоянные величины давлений пара можно ввести в константу равновесия, и она, таким образом, будет определяться равновесными парциальными давлениями газообразных участников реакции. Например, для реакции [c.135]


    Гомогенные химические равновесия в жидкой фазе [c.284]

    Том III (1964 г.) включает данные по гомогенному химическому равновесию в газовой и жидкой фазах гетерогенному химическому равновесию (твердое тело — жидкость газ — жидкость твердое тело — газ жидкость — жидкость криоскопиче-ские и эбулиоскопические константы) свойствам гомогенных жидких растворов (плотность, коэффициенты активности, энергетические свойства, теплопроводность, электропроводность и числа переноса, вязкость, поверхностное натяжение, показатели преломления) электродным процессам в растворах и расплавах химической кинетике и диффузии. Том заканчивается предметным указателем.  [c.23]

    Растворы — гомогенные системы переменного состава, находящиеся в состоянии химического равновесия. Растворы представляют собой дисперсные системы, в которых частицы одного вещества равномерно распределены в другом. Дисперсные системы по характеру агрегатного состояния могут быть газообразными, жидкими и твердыми, а по степени дисперсности — взвесями, коллоидными и истинными растворами. Частицы взвесей обычно имеют размер порядка 1 мкм и более. Такие частицы сохраняют все свойства фазы. Поэтому взвеси следует рассматривать как гетерогенные системы. Характерным признаком взвесей служит их нестабильность во времени. Они расслаиваются, причем диспергированная фаза (т.е. вещество, распределенное в среде) выпадает в виде осадка или всплывает в зависимости от соотношения плотностей. Примерами взвесей могут служить туман (жидкость распределена в газе), дым (твердое - - газ), суспензии (твердое + жидкость), эмульсии (жидкость - - жидкость), пены (газ + жидкость). [c.146]

    Определение химического равновесия в гомогенных системах (жидкая фаза) [c.252]

    Пользуясь знанием законов равновесия в гомогенной среде, мы можем подойти к изучению химических равновесий для процессов, идущих в неоднородной (гетерогенной) среде, когда реагирующие вещества находятся в различных фазах. Каждое твердое или жидкое вещество при постоянной температуре обладает определенной упругостью пара и посылает с поверхности раздела фаз свои частицы в газовую фазу до тех пор, пока не установится равновесие между парами и конденсатом, когда в единицу времени столько же частиц покидает поверхность твердого или жидкого вещества, сколько прилетает к ней из паров. Благодаря наличию конденсата газовая концентрация данного вещества в газовой фазе все время поддерживается постоянной. Химическая же реакция происходит между парами в газовой фазе, где и устанавливается обыкновенное гомогенное химическое равновесие. [c.169]


    Гомогенные реакции в жидкой фазе описываются в основном теми же методами, что и гомогенные реакции в газовой фазе. Здесь также приходят к ЗДМ и к уравнениям зависимости констант равновесия от температуры и давления. Поэтому можно ограничиться более кратким рассмотрением. Существенное отличие от реакций в газовой фазе состоит в выборе переменных концентрации и стандартного состояния. Для теоретического рассмотрения здесь целесообразно выбрать мольные доли. Поэтому для химического потенциала компонента пишем [c.170]

    Для гомогенных химических равновесий в жидкой фазе условия (2.5) и (2.9) сохраняются, только при этом летучести fi заменяются на активности щ (или мольные доли в случае идеального раствора). Для гетерогенных химических равновесий условия (2.5) и (2.9) так же сохраняются, причем для компонентов газовой фазы будут фигурировать величины а для компонентов жидкой и твердой фазы — величины а,. При равновесии химические потенциалы данного компонента (индекс ) во всех фазах (индекс г) равны [c.192]

    Таким образом, процедура качественного химического анализа представляет собой последовательное отделение анаштических групп с дальнейшим откры-таем входящих в них ионов систематическим или дробным методами. В ходе выполнения анализа как систематическим, так и дробным методами аналитик управляет поведением ионов в растворе, прежде всего их концентрациями. Такое управление возможно на основе равновесных реакций путем смещения равновесий. В распоряжении аналитика два типа рав1ювеспых процессов — гомогенные и гетерогенные равновесия. Гомогенные равновесия — это диссоциация — ассоциация, окисление — восстановление, гидролиз, нейтрализация, комплексообразование. Количественное описание этих равновесий основано на законе действующих масс и уравнении Нернста для окислительновосстановительного потенциала системы. К гетероген-ныи равновесиям относятся, прежде всего, растворение и осаждение осадков, экстракционное распределение между двумя жидкими фазами и хроматографические процессы. Расчеты положения гетерогенного равновесия возможны на основе констант межфазных распределений, в первую очередь правила произведения растворимости. [c.72]

    Решение. Определим сначала фазовые состояния систем в различных областях диаграммы. В области I все системы гомогенные. Одна жидкая фаза, расплав /у л == 2. В области II системы гетерогенные. В равновесии находятся кристаллы компонента А и расплав /уел = 1- В области III системы гетерогенные. В равновесии находятся расплав и кристаллы неустойчивого химического соединения А В /уел = 1. В области IV системы гетерогенные. В равновесии находятся кристаллы В и расплав = 1. В области V все системы гетерогенные. В равновесии находятся две твердые фазы, кристаллы компонента В и кристаллы химического соединения А Ву. При температурах ниже Ti химическое соединение становится устойчивым fy J = 1, В области VI все системы гетерогенные. В равновесии находятся кристаллы А и Aj-By /удл = 1. В точке э сосуществуют в равновесии три фазы. Две твердые, кристаллы А, кристаллы А Ву и расплав /усл=0-В точке р в равновесии три фазы, кристаллы В, кристаллы соединения Аа Ву, которое становится устойчивым при температуре плавления Ti, и расплав = 0. [c.243]

    Как видим, появление дополнительно еще только одной жидкой фазы существенно усложняет общую картину фазового равновесия в двухкомпонентной системе. Очевидно, образование промежуточных твердых фаз в двухкомпонентной системе также должно внести самостоятельный элемент в диаграмму состояния. Как правило, промежуточные твердые фазы формируются на основе определенных химических соединений, которые могут плавиться конгруэнтно либо распадаться в результате перитектического превращения. Обсуждение характера концентрационной зависимости изобарно-изотермического потенциала промежуточных, фаз следует вести в соответствии со строго термодинамически обоснованным понятием фазы. При этом требуется уточнение принадлежности растворов на основе существующих в системе определенных химических соединений к одной или разным фазам. Как известно, природа фаз определяется особенностями межмолекулярного взаимодействия. Последнее в первую очередь обусловлено сортом частиц, их образующих, так как именно природа частиц, образующих данную фазу, обусловливает величину и характер сил обменного взаимодействия, что приводит к формированию вполне определенных химических йязей. Если растворы и фазы различаются родом образующих их частиц (по сортности), то, следовательно, их химические составы (речь идет об истинных составах) качественно различны. Следствием этого является тот факт, что термодинамические характеристики фаз, различающихся родом частиц, описываются разными фундаментальными уравнениями. Это очень важное заключение с необходимостью приводит к выводу о том, что такие растворы даже в пределах одной гомогенной системы должны рассматриваться как самостоятельные фазы. Различие между зависимостями свойств растворов, имеющих качественно иные химические составы, от параметров состояния должно проявляться если не в виде функций, то по крайней мере в значениях постоянных величин, фигурирующих в уравнениях этих функций и отражающих специфику меж-частичного взаимодействия, а следовательно, и химическую природу сравниваемых растворов. В случае растворов или фаз переменного состава данному качественному составу или, иначе говоря, данному набору частиц по сорту отвечает конечный интервал Голичественных составов в данной системе, в пределах которого только и существует строго определенный единственный вид зависимости термодинамических и иных свойств от параметров состояния. Положение о том, что характер зависимости свойств от параметров состояния определяется качественным химическим составом, весьма существенно и названо А. В. Сторонкиным принципом качественного своеобразия определенных химических соединений. Значение этого принципа заключается в том, что его использование позволяет четко определить принадлежность рас- [c.293]


    Чтобы разобраться в вопросе о скоростях реакций, химики стараются по возможности упростить проблему. Удалось хорошо изучить ход гомогенных реакций (в газовой фазе или в жидком растворе), идущих при постоянной температуре. Для этого опыты производили в реакционном сосуде, установленном в термостате, обеспечивающем постоянную температуру. Количественная теория скоростей реакций, излагаемая ниже, представляет особый интерес ввиду ее связи с теорией химического равновесия. [c.487]

    Количество твердых и жидких фаз в системе может быть любым, однако газовая фаза только одна, так как разные газы в условиях равновесия образуют гомогенную область. Следовательно, фаза не всегда должна состоять только из одного вещества определенного химического состава. Жидкий раствор или кристалл образуют одну фазу, если они во всех частях являются гомогенными. Вместе с тем, как было указано, система, состоящая из жидкости и пара, образует две фазы. То же относится и к двум не смешивающимся жидкостям или насыщенному раствору, в котором преобладает растворенное вещество (или растворитель). [c.22]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Термодинамический анализ процесса растворения химически не реагирующих с растворителем газов основан на рассмотрении условий фазового равновесия распределения газа А между паровой фазой V и гомогенной жидкой фазой (насыщенным раствором) L  [c.216]

    Гетерогенные равновесия, в отличие от гомогенных, не чувствительны к диссоциации и ассоциации компонентов, если эти процессы не сопровождаются глубокими химическими превращениями, приводящими к образованию индивидуально существующих веществ. Диссоциация и ассоциация компонентов в гомогенных фазах гетерогенных систем сказываются на термодинамических параметрах, при которых происходят фазовые превращения, но не влияют на число находящихся в равновесии фаз. Например, диссоциация хлористого натрия в жидкой фазе (расплаве) по реакции [c.196]

    Вывод уравнения (241) мы относили к гомогенной реакции, но это ограничение легко снимается, и уравнение становится приложимым к любому химическому равновесию (независимо от присутствующих фаз). Если реагирующая система наряду с газообразной фазой содержит твердую и жидкую фазы, то ясно, что когда система в целом будет находиться в равновесии, то будут иметь место и химическое равновесие в газообразной фазе и фазовое равновесие между различными фазами. Другими словами, любую реакцию можем условно рассматривать как гомогенное равновесие в газовой фазе, поскольку можно считать, что все вещества обладают некоторым давлением насыщенного пара. Кроме того, для равновесия между фазами мы имеем уравнения [c.202]

    С помощью газовой хроматографии возможно определение коэффициентов распределения газ — жидкость или газ — твердое тело при малых концентрациях и конечных концентрациях, термодинамических функций сорбата (свободная энергия, энтальпия и энтропия) и, кроме того, следующих физико-химических характеристик констант устойчивости комплексов, коэффициентов активности, растворимости в системах газ — жидкость и жидкость — жидкость, характеристик специфического взаимодействия (водородной связи, комплексов с переносом заряда), структуры летучих и нелетучих соединений, давления пара веществ и их температуры кипения, вириальных коэффициентов, коэффициентов сжимаемости газов, поверхности твердых тел, пористости, размера частиц, кислотности, коэффициентов диффузии в газовой и жидкой фазах, констант скорости гомогенных и гетерогенных реакций, констант равновесия, молекулярных масс веществ, температур фазовых переходов, диэлектрической проницаемости и дипольного момента [c.186]

    Процесс изоморфной сокристаллизации в зависимости от условий может приводить к гомогенному или гетерогенному распределению радионуклида в твердой фазе. В случае гомогенного распределения устанавливается термодинамическое равновесие между кристаллом в целом и раствором. Закон распределения микрокомпонента между твердой и жидкой фазами называется законом Хлопина. Согласно этому закону, если два сокристаллизующихся вещества (микро- и макрокомпонента) являются истинно изоморфными, т. е. сходственны по химическому составу и молекулярной структуре, распределение микрокомпонента между твердой кристаллической фазой и раствором происходит в постоянном отношении D к распределению макрокомпонента. Константа Z) называется коэффициентом кристаллизации. [c.319]

    Но равновесие фаз в сплаве определяется величинами энергий Гиббса или других термодинамических свойств фаз не на всем поле термодинамических переменных, а лишь на границах гомогенных областей сосуществующих фаз. Следовательно, в ходе расчетов с применением диаграмм состояний можно построить не всю поверхность термодинамического потенциала, а в лучшем случае лишь некоторые ее сечения, зависящие от вида диаграммы состояний. Это поясняется рис. 3, на котором для диаграммы типа вырожденной эвтектики без первичных твердых растворов схематически показана поверхность относительного химического потенциала жидкой двухкомпопентной системы, Аца, и пересекающая ее поверхность функции неравновесного плавления компонента А, (гА,т( ). Согласно (18) линия пересечения этих поверхностей отвечает значениям химического потенциала А в сосуществующих фазах — жидком растворе и чистом веществе А. Проекция линии на координатную плоскость Т, х дает диаграмму состояний системы. Зная кривую ликвидус ЫЪ) и свойства чистого компонента А (т. е. поверхность Цл.т), можно восстановить форму сечения (ас) поверхности Ац, . Построить же по сечепию всю поверхность А1Хд(Г, х) нли даже ее участок, непосредственно примыкающий [c.18]

    При кристаллизации вещества из раствора оно загрязняется примесями, находящимися в исходной жидкой фазе. Процесс захвата примеси образующейся твердой фазой в общем случае принято называть соосаждением [427, 428]. Следует отметить, что явление соосаждения часто используется для освобождения исходного раствора от примесей. С этой целью в раствор вводится небольшое количество специально подобранного реагента, который дает малорастворимые соединения как с примесями, так и с основным веществом. Образующаяся твердая фаза увлекает с собой в химически связанном виде основную массу примесей и удаляется [429, 430]. В литературе имеются сообщения о разработке такой методики применительно к условиям противоточного соосаждения [431—433]. Различают истинное, гомогенное соосажде-ние и поверхностное, гетерогенное, обусловленное адсорбцией. Гомогенное соосаждение имеет место тогда, когда интересующее вещество и примесь изоморфны или изодиморфны, т. е. обладают способностью кристаллизоваться в совместной кристаллической решетке. Эту разновидность соосаждения называют сокристалли-зацией [428, 434]. Существенную роль в процессах соосаждения, особенно при гетерогенном соосаждении, играют условия выделения твердой фазы. При определенных условиях между твердой и жидкой фазами может быть достигнуто равновесие, в этом случае говорят о равновесном распределении примеси между указанными фазами. [c.261]


Смотреть страницы где упоминается термин Гомогенное химическое равновесие в жидкой фазе: [c.3]    [c.8]    [c.273]    [c.269]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.77 , c.176 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.77 , c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Гомогенное химическое равновесие

Жидкая фаза

Определение химического равновесия в гомогенных системах (жидкая фаза)

Равновесие гомогенное

Равновесие фазой

Химическое равновесие



© 2025 chem21.info Реклама на сайте