Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод активированного комплекса (переходного состояния) Теория абсолютных скоростей реакций

    Теория абсолютных скоростей реакции, или метод активированного комплекса, позволяет рассчитать скорость реакции, если известны некоторые параметры, характеризующие потенциальную поверхность. Скорость химической реакции равна скорости перехода активного комплекса через потенциальный барьер. Основным уравнением теории активированного комплекса является уравнение, связывающее константу скорости реакции со свойствами переходного состояния  [c.299]


    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]

    МЕТОД АКТИВИРОВАННОГО КОМПЛЕКСА (ПЕРЕХОДНОГО СОСТОЯНИЯ). ТЕОРИЯ АБСОЛЮТНЫХ СКОРОСТЕЙ РЕАКЦИЙ [c.260]

    Промежуточное состояние системы реагирующих частиц, соответствующее этому максимуму, называется переходным состоянием, или активированным комплексом. В теории активированного комплекса переходное состояние рассматривают как обыкновенную молекулу, обладающую обычными термодинамическими свойствами, за исключением того, что движение... вдоль координаты реакции приводит к распаду с определенной скоростью. Сделав это допущение, при помощи статистических методов можно найти концентрацию активированных комплексов и скорость их перехода через критическую конфигурацию активированного состояния (Г. Глесстон, К. Лейдлер, Г. Эйринг. Теория абсолютных скоростей реакций. М., 1948). [c.276]

    Итак, по теории абсолютных скоростей реакций должно наблюдаться увеличение свободной энергии при переходе от исходного состояния в активированное, в отличие от теории столкновений, согласно которой при электростатическом взаимодействии изменяется частота столкновений. Таким образом, метод абсолютных скоростей более гибок, чем теория столкновений, так как можно представить себе самые различные структуры активированного комплекса в зависимости от детального механизма рассматриваемой реакции. В простейшем случае, когда реагирующие молекулы только подходят друг к другу и остаются неизменными в переходном состоянии, обе теории становятся эквивалентными. [c.223]


    Наиболее серьезное препятствие для применения теории абсолютных скоростей реакций к вторичным изотопным эффектам связано с невозможностью определения геометрии и частот колебаний переходного состояния некинетическими методами. В дальнейшем будут рассмотрены некоторые конкретные примеры, в которых были сделаны попытки расчета вторичных изотопных эффектов по уравнению (П1-14) или по эквивалентным ему выражениям с использованием различных моделей переходного состояния. По словам Миллера [59], выполнившего множество подобных расчетов, их можно рассматривать как своего рода упражнения для приспособления теоретических моделей активированного комплекса к экспериментальным данным. В большинстве случаев это оказывается, конечно, возможным из-за большого числа варьируемых параметров . Тем не менее подобный способ уточнения носит грубо произвольный характер. Поэтому правильность выбранной модели переходного состояния не может считаться доказанной даже в том случае, если рассчитанные изотопные эффекты численно совпадают с эффектами, измеренными опытным путем. С другой стороны, если расчеты изотопных эффектов на основании данной модели приводят к результатам, резко расходящимся с экспериментом, то эта модель может быть исключена из дальнейшего рассмотрения как, по всей видимости, не соответствующая действительности. [c.114]

    Даже если можно построить полную энергетическую поверхность, это еще далеко не означает, что можно рассчитать абсолютную скорость химической реакции. Как было показано ранее, в реакциях принимают в общем случае участие вещества с широким спектром энергий теплового возбуждения. Поэтому необходимо применить методы статистической механики для расчета соответствующих статистических сумм веществ, принимающих участие в реакции, и активированного комплекса, рассматривая последний как обычную молекулу, за исключением вопроса о колебательной частоте вдоль координаты реакции. Таким образом, в теории переходного состояния вначале рассчитывают полную поверхность потенциальной энергии и на основании этого определяют форму активированного комплекса. Затем используют полученные длины связей, валентные углы и силовые постоянные для расчета соответствующих статистических сумм. Полагают, что реагирующие вещества находятся в равновесии с активированным комплексом, который с фиксированной скоростью распадается на продукты реакции. [c.310]

    Первой теорией абсолютных скоростей реакций, сохранившей значение и по настоящее время, была созданная Эйрингом н Поляни теория переходного состояния или, как ее часто называют, метод активированного комплекса . Эта теория обосновала закон действия масс для элементарных реакций, т. е. пропорциональность скорости реакций произведению концентраций участвующих в реакции частиц, и общий вид зависимости константы от температуры, а также позволила рассчитать для ряда реакций предэкспоненци-альные множители в хорошем согласии с экспериментальными данными. [c.88]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]


Смотреть страницы где упоминается термин Метод активированного комплекса (переходного состояния) Теория абсолютных скоростей реакций: [c.576]    [c.576]    [c.93]   
Смотреть главы в:

Физическая и коллоидная химия -> Метод активированного комплекса (переходного состояния) Теория абсолютных скоростей реакций




ПОИСК





Смотрите так же термины и статьи:

Активированный комплекс

Комплекс активированный Активированный

Комплекс активированный переходных,

Метод активированного комплекса

Метод активированного комплекса Метод

Метод теории

Переходное состояние метод метод

Реакции активированные

Скорость реакции теория активированного комплекса

Состояние переходное

Состояния комплекса

Теория абсолютных скоросте

Теория абсолютных скоросте переходного состояни

Теория абсолютных скоростей

Теория абсолютных скоростей Теория

Теория абсолютных скоростей реакци

Теория абсолютных скоростей реакций абсолютных скоростей реакций

Теория переходного состояния

Теория переходного состояния Теория

Теория реакций



© 2024 chem21.info Реклама на сайте