Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое сродство и равновесия Энтропия

    В последующие годы развитие химической термодинамики пошло по двум, сначала совершенно независимым линиям. Первая связана с именами Гельмгольца и Вант-Гоффа, вторая — с именем Гиббса, В 1882 г. Гельмгольц в статье под названием К термодинамике химических реакций предложил разделить химическую энергию на две части способную превращаться только в теплоту и способную превращаться в другие виды работы. Первую он назвал связанной, а вторую свободрой энергией- Гельмгольц показал, что для изотермических систем минимум свободной энергии является условием их равновесия. Таким образом, наряду с энтропией появился еще один критерий химического равновесия. Принципиальное значение имел и вывод Гельмгольца о том, что именно значения свободной энергии, а не энергии, проявляющейся путем выделения тепла, будут определять, в каком направлении может действовать химическое сродство. Следующий шаг принадлежал Вант-Гоффу (1884—1887). Оперируя моделью идеального газа, Вант-Гофф установил термодинамическим путем связь между равновесными коицептрациями исходных веществ и конечных продуктов реакции, т. е. вывел теоретически закон действия масс. Вант-Гофф предложил также уравнение, выражающее зависимость константы равновесия (он впервые применил этот термин, так же как и знаки для обратимых реакции) от температуры, установил зависимость между константой равновесия К и работой Е. которую может произвести химическое сродство  [c.121]


    Из свойств химического потенциала компонентов [см. (11.77)] следует, что стандартное химическое сродство и, следовательно, константа химического равновесия находятся в некоторой функциональной зависимости от температуры системы [см. (11.83)]. Для выявления формы этой зависимости допустим, что в интервале от Т до Т" изменения энтальпии (тепловой эффект реакции) и энтропии системы, происходящие в результате реакции, не за- [c.143]

    Принятие максимальной работы реакции за меру химического сродства обосновывается вторым законом термодинамики. Согласно этому закону, все самопроизвольные процессы приближают систему, в которой они осуществляются, к состоянию равновесия, сопровождающегося увеличением энтропии и уменьшением термодинамических потенциалов Р к I. [c.207]

    В этом же разделе он разбирает работы В. Томсона и Клаузиуса по термодинамике, связывает учение о диссоциации с энтропией, рассматривает цикл Карно. Последующие разделы он посвящает равновесиям между двумя химическими реакциями и реакциям двойного разложения. Соединения и разложения, ограниченные пределом, представляют собою лишь частный случай химических равновесий, —писал В. Ф. Алексеев. —Именно это будет, говоря обыкновенным языком химиков, равновесие между химическим сродством и тепловой энергией [7, стр. 375]. [c.67]

    Таким образом, с точки зрения второго начала термодинамики и рост энтропии, и убыль свободной энергии представляют собой меру сродства химической реакции. Отсюда и вытекает принцип, установленный Вант-Гоффом, что за меру химического сродства следует принять величину свободной энергии, точнее говоря, разность свободных энергий системы до и после реакции, рассчитанную на определенную массу (грамм, моль) реагирующих веществ. При наступлении равновесия эта разность доходит до минимума, а именно, принимает значение, равное нулю в этот момент свободные энергии одинаковых масс веществ до и после реакции равны между собой. [c.165]

    Если не удается определить константу равновесия реакции взаимодействия исследуемой системы и вспомогательной, то химическое сродство AG° вычисляют по уравнению AG° = ДЯ° — TAS°. Тепловой эффект АН° реакции в растворе может быть определен калориметрически. Необходимые сведения об энтропии ионов в растворе можно найти в литературе, например [151, гл. 3 152, прилож. 1]. Стандартное химическое сродство реакции можно также вычислить, если воспользоваться свободными энергиями образования ионов в водном растворе. [c.71]


    В биологических процессах, которые всегда протекают на основе химических реакций, скорость производства энтропии, т. е. скорость разрушения структурности в ходе необратимых процессов, определяется через химические сродства реагирующих веществ и скорости химических реакций (Донде, 1936). Вблизи состояния термодинамического равновесия в открытой системе имеет место линейная зависимость между скоростью и химическим сродством реакции. В живой системе как открытой системе вблизи состояния равновесия скорость производства энтропии должна быть положительной величиной, пропорциональной химическому сродству. [c.144]

    Таким образом, вдали от равновесия действительно могут возникать неустойчивые состояния диссипативной системы. Появление неустойчивости в некотором исходном состоянии означает переход системы в новый режим, которому может отвечать иной тип поведения. Допустим, что имеется нелинейная система химических реакций, в ходе которых исходные вещества А превращаются в конечные продукты Г. Систему можно охарактеризовать некоторым параметром Д, зависящим от общего сродства, т. е. от отношения концентраций А и и от константы равновесия. На рис. 9.4 стационарная концентрация промежуточного вещества представлена как функция Я. При малых отклонениях от равновесия Д— система перемещается плавно вдоль термодинамической (статической) ветви АВ на рис. 9.4. Все стационарные состояния на этой ветви устойчивы и согласуются с теоремой о минимумах производства энтропии. Однако на достаточно большом удалении от равновесия, при некотором пороговом значении Не избыточная продукция энтропии, равная [c.330]

    Однако принцип Бертло — Томссна противоречит термодинамике и самому факту существования химического равновесия. Как было показано выше, в зависимости от соотношения между концентрациями, реагирующих веществ реакция может самопроизвольно протекать как в прямом, так и в обратном направлениях. При этом в одном случае она будет сопровождаться выделением тепла, а в другом — его поглощением. Экзотермические реакции, например, образования сульфидов переходных металлов, при относительно низких температурах идут практически до конца, а при высоких температурах происходит диссоциация этих соединений. Принципу Бертло — Томсена такн е противоречит существование самопроизвольных процессов, сопровождающихся поглощением тепла, например, растворение многих солей в воде. Следовательно, величина изменения АН реакции не может служить мерой химического сродства. Такой мерой является величина ДО, определяемая уравнением AG = AH—T S, где ДЯ и AS — изменения энтальпии и энтропии реакции. [c.69]

    Эти уравнения имеют большое значение, так как они применимы и к закрытым, и к открытым системам. С их помощью изучают химическое равновесие в открытых системах, а также используют, например, составляя баланс энтропии при рассмотрении неравновесных процессов (см. гл. IX). Установим связь химического сродства А с химическими потенциалами реагентов. Уже известно, (5.75), что, например, при постоянных температуре и давлении А = — д01д1)т,р, но если положить G = 0(Т, р, rij , ti2,. ..), то при Т и р = onst [c.160]

    Выражение термодинамического сродства через свободную энергию шозБОЛяет нам обобщить химические реакции, подводя под категорию реакций и многие физические процессы, и, в частности, изменения агрегатных состояний вещества. С химическими реакциями эти процессы имеют следующие общие черты во-первых, в результате изменений агрегатных состояний получается вещество с другими физическими свойствами во-вторых, эти процессы связаны с поглощением или выделением теплоты в-третьих, как, например, при кристаллизации переохлажденной жидкости, мы имеем процесс, ведущий к устойчивому равновесию, причем в адиабатных условиях этот процесс, как показано, ведет к возрастанию энтропии, а в изотермических условиях, подобно химическим реакциям, сопровождается уменьшением свободной энергии. Мы можем, таким образом, изменение агрегатных состояний рассматривать как некоторый предельный случай химических реакций, когда количество другого реагирующего вещества равно нулю. [c.166]

    Тогда иа основании аргументов, аналогичных изложенным в разд. 2,в в связи с влиянием полярных групп на химическое равновесие, можно утверждать, что энергия активации второй реакции должна быть меньше. Соответственпо скорость второй реакции должна быть больше при часто выполняющемся условии, согласно которому влиянием структурного изменения на энтропию активации можно пренебречь. Если А структурно изменить и превратить в Аг, причем Аг будет иметь меньшее сродство к электронам, чем А, то влияние изменения энергии активации на скорость реакции окажется обратным, нежели описанное выше. Если реакция принадлежит к противоположному полярному типу, т. е. если реагент С атакует валентные электроны В с образованием переходного состояния, в котором электроны оттянуты от радикала А более, чем в исходной молекуле, то кинетический эффект превращения А в Ai или в Аг будет в каждом случае про-тивоположеп описанному выше. [c.49]



Смотреть страницы где упоминается термин Химическое сродство и равновесия Энтропия: [c.651]    [c.567]    [c.185]   
Смотреть главы в:

Введение в общую химию -> Химическое сродство и равновесия Энтропия

Введение в общую химию -> Химическое сродство и равновесия Энтропия




ПОИСК





Смотрите так же термины и статьи:

Сродство

Химические энтропии

Химическое равновесие

Химическое сродство



© 2024 chem21.info Реклама на сайте