Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия, изменение при образовании ионных пар

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]


    Многие свойства растворов электролитов определяются взаимодействием ионов. Так как при этом не требуется разрушения связей в молекулах сложных веществ, то реакция между ионами должна протекать легче, чем между молекулами. Направление процессов определяется энергетическими изменениями. Процесс самопроизвольно идет только в том случае, когда в системе уменьшается свободная энергия. Например, к понижению свободной энергии приводит образование слабодиссоциирующих веществ. Таким образом, реакции в растворах электролитов будут всегда направлены в сторону образования наиболее слабого электролита, в форме которого удаляется часть ионов. Суть процесса любой реакции нейтрализации состоит в образовании слабого электролита Н2О и выражается сокращенным ионным уравнением [c.128]

    Ионы многих двухвалентных переходных металлов имеют идентичные заряды и приблизительно одинаковые радиусы, так что энтропии гидратации для них также одинаковы. Таким образом, различие равновесных значений констант образования комплексов для этих ионов, приводящее к различным значениям изменения свободной энергии при образовании комплекса, обусловлено в основном тепловым членом АЯ. Величину этого члена определяют по крайней мере три, не полностью независимых, фактора размер иона, электроотрицательность и угловая поляризация -орбит. Влияние последнего фактора, вклад которого в общую энергию связи составляет около 10%, всесторонне изучено с помощью методов теории поля лигандов. Эта теория успещно объясняет взаимосвязь магнитных и спектральных свойств комплексов переходных металлов, а также равновесных и кинетических параметров таких комплексов, и мы здесь кратко и чисто качественно рассмотрим ее. [c.415]

    Сродством атома к электрону (СЭ) называют изменение энергии в процессе присоединения электрона к свободному атому с образованием отрицательного иона при температуре О К А + е ->- А . [c.229]

    Выделение более электроотрицательного металла на поверхности более электроположительного нри потенциале, значительно более положительном, чем равновесный нотенциал, происходит в результате изменения свободной энергии нри образовании новой кристаллической решетки соответствуюш,их сплавов, твердых растворов, эвтектик и интерметаллических соединений. Величина наблюдаемой деполяризации при образовании сплавов зависит от состава поверхностного сплава [7]. Участки поляризационных кривых совместного разряда ионов и Н до мак- [c.545]


    Напишите уравнение общей константы нестойкости [Си (NHз)4I] . Определите константу образования этого иона в стандартных условиях из ионов Си + и молекул NHз. Чему равно изменение свободной энергии Гиббса для этого процесса Какие выводы можно сделать по полученным результатам  [c.94]

    Сродством атома к электрону называют изменение энергии в процессе присоединения электрона к свободному атому с образованием отрицательного иона при температуре О К А + е = А (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. Если ВЗАО вырождена и занята не полностью, присоединяемый электрон заселяет ее с соблюдением первого правила Гунда. Из различных методов определения СЭ наиболее прямой и точный — измерение минимальной энергии фотоотрыва электрона от отрицательного иона. [c.39]

    Следует отметить, что солюбилизация спиртов, в отличие от углеводородов, характеризуется отрицательным изменением энтальпии. В этом случае наряду с выигрышем энтропии солюбилизации благоприятствует также энергетический фактор. Он обусловлен, по-видимому, специфическим взаимодействием полярных групп солюбилизата и ПАВ (ион-дипольное взаимодействие и образование водородных связей), что дает дополнительный выигрыш свободной энергии [23]. [c.79]

    Работа, которую надо затратить для того, чтобы вывести центральный ион из его ионной атмосферы или, наоборот, поместить центральный ион внутрь такой оболочки (при постоянном давлении), равна dFe drii) = iig, т. е. равна изменению свободной энергии Гиббса, обусловленной электростатическим взаимодействием иона i с его оболочкой. Это взаимодействие равно произведению потенциала оболочки г )а. иона i на заряд иона ipa.Zie.-Суммирование по всем ионам г-го типа в растворе привело бы к тому, что взаимодействие каждого иона г-го типа было бы учтено дважды один раз, когда данный ион рассматривается как центральный ион, и другой раз, когда этот же ион расположен на оболочке, образованной вокруг другого центрального иона. [c.448]

    Химическую теплоту сольватации, равную изменению энтальпии прп взаимодействии иона с растворителем без учета энергии переноса иона через границу раствора, будем обозначать ДЯс. Наконец, будем различать свободную энергию кристаллической решетки Пар, равную изменению изобарно-изотермического потенциала при образовании кристаллической решетки  [c.154]

    Собственно, все приведенные выше уравнения могут быть получены чисто термодинамическим путем, если сравнить свободную энергию образования ионов в вакууме и в данной среде. Например, изменение изобарного потенциала реакции образования ионов Н+ и Г в вакууме [c.166]

    Если умножить выражение для Ig 7 протона на величину RT, получатся изменения изобарного потенциала при переносе протонов из вакуума в данную среду. Первые два члена характеризуют изменение энергии в связи с присоединением протона к молекуле растворителя и образованием иона лиония в вакууме, вторые два члена характеризуют изменение энергии при дальнейшей сольватации иона лиония. Исходя из этого выражения, можно подсчитать Ig 7он+ если известно изменение свободной энергии, при переходе протона из вакуума в данную среду. [c.198]

    Неметаллы VI и VII групп вступают в реакции почти со всеми элементами, как металлами, так и неметаллами, способными предоставлять электроны для образования ионных или ковалентных связей. Так, кислород непосредственно соединяется со всеми элементами, кроме благородных газов и некоторых металлов с предельно низкой химической активностью (Аи, 1г и т.п.). В табл. 18.4 приведены типичные значения теплоты образования и стандартной свободной энергии образования оксидов металлов. Последовательное уменьшение этих характеристик по абсолютной величине приблизительно соответствует уменьшению реакционной способности металлов. Подобные закономерности изменения термодина- [c.332]

    Изменение свободной энергии, энтальпии и энтропии при образовании силикат-ионов в 5,0 М водных растворах хлорида натрия при 25° С (по данным [54]) [c.185]

    Необходимо сначала определить, что мы подразумеваем под стабильностью иона. Строго говоря, это понятие должно быть связано с изменением свободной энергии, сопровождающим образование иона. Однако для образования карбониевых ионов из алкилгалогенидов в газовой фазе мы знаем только величины энтальпии образования карбониевых ионов, определенные по методу электронного удара, и производные от них значения энергии гетеролитической диссоциации связи. Следовательно, за неимением лучшего обычно приходится обсуждать различия в изменении свободной энергии с точки зрения различий в соответствующем изменении энтальпии. Часто этот метод бывает вполне удовлетворителен, так как соответствующие изменения энтропии обычно малы. Они не были измерены непосредственно, но их можно вычислить из соответствующих абсолютных энтропий ионизованных молекул и образующихся ионов, если сделать вполне вероятное допущение, что энтропия карбониевых ионов в газовой фазе близка к энтропии исходных углеводородов. Результаты некоторых вычислений, сделанных по этому методу, приведены в табл. 1. [c.22]


    В раборе Зоннтага с сотр. [56] на основе кинетики утончения исследовано расклинивающее давление в октановых пленках, стабилизированных 8рап-80. В широком интервале толщин (100 — 800 А) расклинивающее давление было отрицательным. Многочисленные исследования черных пленок показали, что энергетический барьер отталкивания, обеспечивающий устойчивость, возникает только при переходе л бислойным структурам. Результаты этих исследований тем не менее не могут служить доказательством того, что вклад ионно-электростатической составляющей расклинивающего давления в изменение свободной энергии всегда весьма мал по сравнению с молекулярной составляющей. Наоборот, в силу большой диффузности двойных электрических слоев в неводных средах энергия их ваимодействия может проявляться уже при очень больших толщинах и быть сопоставимой с ван-дер-ваальсовской, хотя суммарное расклинивающее давление будет при всех толщинах, вплоть до образования черной пленки, отрицательным. [c.133]

    В изменение свободной энергии при образовании переходного комплекса входит работа электростатических сил Е1Х, где — дипольный момент, свойственный бензольному производному Е — электрическое поле, создаваемое молекулой, реакция с которой изучается Логарифм константы скорости линейно связан с изменением свободной энергии, т. е. Е 1. Величина ст, характеризующая полярность по Гаммету, в первом приближении пропорциональна дипольпому моменту р,. Отсюда непосредственно и вытекает правило Гаммета. Это правило было применено к ионной полимеризации мономеров ряда стирола. На рис. 92 ириведепы данные, полученные для анионных и катионных инициаторов. В обоих случаях получены прямолинейные корреляции, предсказываемые правилом Гаммета, причем наклон прямых имеет разный знак, что является следствием разного знака заряда С-атома в активных комплексах. [c.337]

    До сих пор мы обсуждали свойства простого молекулярного иона НзО и теплоту и стандартную свободную энергию его образования из H as и HgOgas. Ночти ВО всех электрохимических и химических реакциях с участием протона он рассматривается как ион Н3О+, существующий в объеме диэлектрической среды, чаще всего воды. Так как радиус НзО" " близок к радиусу иона калия, можно предполагать, что суммарная теплота сольватации будет значительно более отрицательна, чем изменение теплосодержания при протонизации газообразной молекулы воды, которое может быть примерно отождествлено с —Риао- [c.73]

    Как мы видели, в некоторых случаях звеном, определяющим устойчивость системы, является величина изменения свободной энергии при образовании комплексного иона из негидратированного центрального иона и [c.176]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Химическая кинетика, изучающая реакции в их движении, может быть противопоставлена термодинамике, которая ограничивается лишь рассмотрением статики химических реакций — равновесий. Термодинамика в принципе при наличии некоторых исходных данных может предсказывать эти равновесные состояния. Однако между величиной изменения свободной энергии при реакции и ее скоростью не существует прямой связи. Так, реакция образовання воды из На и Оа идет с меньшей скоростью, чем реакция между ионами Н" и ОН , хотя первая сопровождается значительно большей убылью свободной энергии. Таким образом, вопросы о том, в течение какого времени и каким путем совершаются те или иные процессы, находятся вне рамок термодинамики и время не входит в термодинамические уравнения. [c.318]

    Это уравнение не учитывает изменение энергии электронов центрального иона под влиянием сил отталкивания, возникающих между этими электронами и отрицательно заряженными лигандами. В результате отталкивания энергия -электронов увеличивается. На рис. 13.2 в качестве примера горизонтальной чертой А показан энергетический уровень -электронов свободного центрального иона до взаимодействия с лигандами, а горизонтальной чертой Б — этот же уровень после образования комплекса, например [РеРб]з- [c.251]

    Можно, однако, предположить, что в данном случае образование свободных радикалов происходит так же, как и в реакциях с участием перекиси водорода и ионов переменной валентности. Известно, что Н. Н. Семенов [91], воспользовавпшсь данными Ури [92] об изменении свободной энергии в следующих Двух процессах  [c.210]

    Реакционный комплекс иногда называют комплексом столкновения, однако совершенно очевидно, что простого столкновения далеко недостаточно для образования структуры, в которой возможен перенос протона. Работа W , которую необходимо затратить для образования реакционного комплекса, представляет собой по существу ту часть А на, которая не зависит от изменений р/СанА. Величина Ц/ , необходимая для переноса протона с членов гомологического ряда кислородных кислот на один и тот же субстрат, согласно предположению, определяется потерями энтропии при фиксации молекулы кислоты и свободной энергией ее десольватации. Свободная энергия десольватации третичных аминов практически не коррелирует с их основностью. Сольватация аминов обусловлена главным образом ван-дерваальсовскими взаимодействиями, которые играют заметную роль и при сольватации ионов, поэтому разумно предположить, что свободная энергия десольватации аммониевых солей также никак не связана с их кислотными свойствами. Было показано, что даже прочность водородных связей лишь слабо коррелирует с силой кислот. Таким образом, в ряду родственных кислот [c.133]

    Определение термодинамических характеристик различных цеолитов должно было бы дать весьма интересную информацию. Грунер [41] расположил силикаты в порядке изменения свободной энергии образования при низких температурах. Оказалось, что силикаты, содержаш ие гидроксильные группы или молекулы воды, характеризуются меньшими энергетическими показателями, чем алюмосиликаты, образующиеся в природных гидротермальных процессах. Энергетические показатели рассчитывались исходя из электроотрицателыюстей составляющих ионов. [c.421]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]


Смотреть страницы где упоминается термин Свободная энергия, изменение при образовании ионных пар: [c.204]    [c.177]    [c.42]    [c.540]    [c.230]    [c.262]    [c.230]    [c.177]    [c.177]    [c.160]    [c.175]    [c.139]    [c.611]    [c.402]    [c.475]    [c.168]    [c.99]    [c.60]    [c.122]    [c.54]    [c.54]   
Основы химической кинетики (1964) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Закономерности изменения теплот и свободных энергий образования ионных соединений с возрастанием атомного номера

Изменение свободной энергии

Ионные образование

Ионные энергия образования

Ионов образование

Ионы образование

Ионы энергия,

Свободная энергия

Энергия ионов

Энергия образования

Энергия свободная образования

Энергия свободных ионов



© 2024 chem21.info Реклама на сайте