Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение теории групп к молекулярным структурам

    Применение теории групп к молекулярным структурам [c.169]

    При наблюдающемся многообразии структур карбонилов металлов применение инфракрасной спектроскопии для их распознавания исключительно важно. Метод установления молекулярной структуры при использовании теории групп уже был рассмотрен в разд. 7 и 9 ч. I. Однако, как отмечалось в конце разд. 9 ч. I, прн применении этого простого метода для интерпретации наблюдаемого спектра следует соблюдать осторожность. [c.241]


    Кроме уже упомянутой классификации в соответствии с энергетическими барьерами, предпринимались попытки унифицировать критерии классификации необычайно разнообразного и богатого явления химической изомерии с помощью современных алгебраических средств — методами теории множеств, графов и групп. Эге [56] описал взаимосвязи между изомерами с помощью теории множеств и отметил важность отношения эквивалентности. Рух и сотр. [57, 58] получили алгебраические аналоги конфигураций перестановочных изомеров для случая общего жесткого молекулярного скелета, на котором размещается заданный набор лигандов. Мислоу [59] классифицировал взаимосвязи между изомерными структурами на основе представления молекул графами, ребрам которых были приписаны веса. Проводились систематические теоретико-групповые исследования [60—63] проблемы хиральности связь между симметрией и хиральностью подытожена в работе Мида [64]. Но наиболее важные применения в химии нашли работы Уги и сотр. [38, 46, 65—69], посвященные логической структуре химии, отношениям эквивалентности в химии и обобщению понятия изомерии. Эти исследования образуют теоретическую основу численного моделирования синтеза и будут рассмотрены в следующем разделе. [c.33]

    Молекулярные системы и проще кристаллов (так как содержат меньше атомов) и сложнее (так как их группа симметрии беднее). Это следует иметь в виду, рассматривая применение молекулярных моделей в теории электронной структуры твердых тел введение молекулярной модели необязательно связано с упрощением расчета и должно быть обусловлено физической сущностью рассматриваемой задачи. Применение молекулярных моделей целесообразно прежде всего при исследовании явлений в твердых телах, которые не поддаются описанию в рамках зонной теории. К таким явлениям относятся адсорбция и катализ, связанные с процессами на поверхности кристаллов существенные для практических применений свойства твердых тел, обусловленные наличием примесей или дефектов структуры (локальных центров) и др. [c.86]

    В теории комплексных соединений переходных элементов нашла широкое применение т. н. теория ноля лигандов, тесно связанная с квантово-механич. теорией атомных спектров ионов-комплексообразова-телей и с общей теорией симметрии (теорией групп). В теории поля лигандов образование комплексного соединения рассматривается как результат электростатич. взаимодействия между центральным ионом переходного элемента и лигандами. Под действием электростатического поля лигандов (моделируемого обычно в виде поля точечных зарядов или точечных диполей), обладающего кубической (или более низкой) симметрией, происходит расщепление -уровней центрального иона, к-рое вызывает стабилизацию комплекса. Теория поля лигапдов оказалась пригодной для объясне1шя ряда закономерностей электронной структуры комплексных соединений, а также их оптических и магнитных свойств. Для более точного описания электронной структуры ко.мплексных соединений чисто электростатич. теория поля лигандов дополняется с учетом возможности образования в известной мере ковалентных связей между центральным ионом п лигандами такая уточненная теория использует представления о гибридизации волновых функций центрального иона и представляет собой синтез теории поля лигапдов либо с методом валентных схем, либо с методо.м молекулярных орбит. [c.266]


    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    При адсорбции на твердых телах разной природы проявляются молекулярные и химические взаимодействия во всем их разнообразии от ван-дер-ваальсовых взаимодействий до образования нестойких донорно-акцепторных соединений и прочных ковалентных связей. Исследование этих взаимодействий в случае адсорбции имеет свои преимущества. Во-первых, в отличие от газов и жидких растворов, силовые центры на поверхности адсорбента фиксированы. Во-вторых, в отличие от объема твердого тела, на поверхности можно реализовать невозмущенное состояние отдельных функциональных групп, например гидроксильных. Вместе с тем, поверхностные соединения и адсорбционные комплексы можно изучать с помощью химических и физических методов, дающих богатую информацию о химии поверхности, природе адсорбционного взаимодействия и состоянии адсорбированного вещества. Здесь нашли широкое применение химические, изотопнообменные, дифр актометрические и спектроскопические методы исследования состава и структуры поверхностного слоя твердого тела и поверхностных соединений, спектроскопические и радиоспектроскопические методы изучения состояния адсорбционных комплексов, а также статические и динамические (в частности, хроматографические и калориметрические) методы измерения изотермы адсорбции, теплоты адсорбции и теплоемкости адсорбционных систем. Однако исследованию адсорбции комплексом этих методов долгое время мешала неоднородность состава и структуры самих объектов исследования — традиционно применявшихся адсорбентов (активные угли, силикагели и другие ксерогели). В результате, во-первых, образовался разрыв между молекулярными моделями адсорбции, используемыми в теоретических исследованиях, и экспериментальными данными, получаемыми на адсорбентах, по степени чистоты и неоднородности структуры весьма далеких от теоретических моделей. Благодаря этому молекулярная теория адсорбции не находила экспериментальной базы, и ее развитие задерживалось. Во-вторых, выпускавшийся набор адсорбентов не смог удовлетворить и запросы новой техники. Например, для использования в хроматографии [c.5]

    Различные индексы реакционной способности соответствуют различным моделям переходных состояний и движущих сил реакции, При использовании индексов первой группы исходят иэ предположения о раннем переходном состоянии близком по структуре и положению на энергетическом профиле реакции к исходной молекуле. Индекс свободной валентности ( Рл) является современным видоизменением представлений Тиле об остаточном сродстве (см, разд. 1.1.1). Чем больще степень участия атома в положении г в образовании л-связей с соседними атомами ароматической системы, тем меньше его индекс свободной валентности и способность связываться с атакующим реагентом. Использование я-электронной плотности [дг), рассчитываемой суммированием вкладов всех заполненных МО, адетсватно представлению Об определяющем значении электростатического взаимодействия между субстратом и реагентом, благодаря которому электрофильная атака легче направляется на атомы с наибольшей, а нуклеофильная — с наименьшей электронной плотностью. Индекс собственной поляризуемости Птг отражает легкость изменения суммарной л-электронной плотности на атакуемом атоме под влиянием реагента. Чем больше индекс Ягг атома, тем легче в это положение должны идти реакциь как электрофильного, так и Нуклеофильного замещения. Граничная электронная плотность учитывает распределение электронной плотности только на граничных орбиталях на высшей занятой молекулярной орбитали (ВЗМО) при электрофильном замещении и на низшей свободной молекулярной орбитали (НСМО) после переноса на нее двух электронов при нуклеофильном замещении. Мерой граничной электронной плотности положения является коэффициент Сг , отражающий вклад атомной орбитали атома в положении г в граничную молекулярную орбиталь т. Считают, что электрофильное и нуклеофильное замещения протекают пр месту с наибольшим значением коэффициента Сг на соответствующей граничной орбитали. При свободнорадикальном замещении и ВЗМО, и НСМО рассматриваются как граничные орбитали [366]. Поскольку граничная электронная плотность пригодна только для рассмотрения ориентации в данной молекуле, для выявления относительной реакционной способности различных систем введен индекс, на-,званный срерхделокализуемостью (5г). При формулировке этого-индекса использована теория возмущений [361 ] в применении к модели, в которой вступающая группа образует слабую п связь с атомом в положении г, а я-система в целом не изменяется. К индексам теории граничных орбиталей [366] близки другие индексы, основанные,на представлении о переходном состоянии как комплексе с переносом заряда, например 7-фактор 43]. Обсуждавшиеся в. связи с концепцией одноэлектронного переноса корреляции между относительной реакционной способ- [c.127]


    Дело в том, что долгое время применение плоских моделей шестичлен мы.х карбоциклических и гетероциклических структур (производные циклогексана, углеводы с пирановым качьцом) не приводило к серьезным противоречия.м с опытом, хотя бы, например, в отношении числа предвидимых стереоизомеров. С другой стороны, молекулярная теория как раз в этот период (1890—1920 гг.) подвергалась нападкам и критике со стороны философов и физиков, стоявших на идеалистических позициях (Мах, Оствальд, Дюгем и др.). Стереохимические модели многими расценивались как ненаучная игра фантазии, те.м более, что открытая о, оло 1890 г. вальденовская перегруппировка грозила совсем запутать вопрос о соответствии мест замещаемых и замещающих групп или атомов. В настоящее время, когда наука располагает метода.ми исследования, позволяющими определять взаимные расстояния атомных ядер в молекуле и углы между направлениями валентностей, рассчитывать дипольные моменты молекул и т. п., у химиков имеется возлюжность установления истинной пространственной конфигурации циклических структур. [c.21]


Смотреть страницы где упоминается термин Применение теории групп к молекулярным структурам: [c.7]   
Смотреть главы в:

Химия координационных соединений -> Применение теории групп к молекулярным структурам




ПОИСК





Смотрите так же термины и статьи:

Применения теории групп

Структура молекулярная



© 2025 chem21.info Реклама на сайте