Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит строение молекулы

    Некоторые химические элементы образуют несколько простых веществ. Это явление получило название аллотропии. Наиример, кислород имеет две аллотропные модификации (или видоизменения), которые различаются составом молекул кислород О2 и озон О3. Аллотропные видоизменения элемента углерода — алмаз и графит имеют разное строение кристаллов. [c.14]


    Однако для некоторых, заведомо гомогенных адсорбционных систем рассмотренные признаки однородности поверхности не соблюдаются. Например, для системы графит—бензол изотерма адсорбции не имеет перегиба, а теплота адсорбции практически постоянна в области монослоя. В то же время для этого же адсорбента изотерма адсорбции -гексана имеет перегиб, а теплота адсорбции проходит через высокий максимум. Причина такого явления обусловлена наличием, наряду с силами притяжения адсорбат—адсорбат, еще и дальнодействующих сил отталкивания электростатической природы. Действительно, атомно-электронное строение молекулы бензола таково, что при ее плоской ориентации на базисной плоскости графита система ее я-электронов образует кольцевой квадруполь с повышенными плотностями электронов сверху и снизу кольца. Вертикально ориентированные такие квадруполи должны испытывать электростатическое отталкивание. Кроме того, дополнительные силы отталкивания возникают между плоско ориентированными диполями С—Н-связей молекулы бензола. [c.44]

    Химики-органики с удовлетворением могут отметить, что именно теория химического строения молекул в значительной мере способствовала развитию теории графов. Так, класс нециклических графов — так называемых деревьев — впервые был установлен еще в середине прошлого века в работах Кэли на основании молекулярной структуры разветвленных предельных углеводородов. Использование топологических представлений может разрешить затянувшийся спор между химиками и некоторыми физиками последние упорно отказывают структурным представлениям химии в физической обоснованности. До сих пор ведется дискуссия на тему о том, имеет ли молекула вид , существуют ли химические связи и т.д. [c.5]

    Первой задачей книги является ознакомление химиков с новыми математическими подходами и методами для их практического использования. Химическое строение молекул обладает основным свойством топологических структур сохранением целостности и непрерывности взаимодействия атомов в молекуле при всех изменениях геометрии, межатомных расстояний, валентных углов. Структура молекул может быть удобно изображена на языке теории графов, что, как выясняется, не просто приводит к новой формализации, но имеет эвристическое значение. Матричные представления молекулярных графов, естественно, связываются с матричными методами квантовой химии, в частности с методом расчетов по Хюк-келю. [c.6]


    Строение молекулы бензола было установлено методом дифракции электронов в 1929 г. и в последующие годы. Это плоский шестиугольник, в котором длина связи углерод — углерод равна 140 пм (длина связи С—Н равна 106 пм). Это значение длины связи, имеющей на 50% характер двойной связи, вполне согласуется с величинами 154 пм для овязи С—С, 133 пм для связи С = С и 142 пм для связи, имеющей на 33 /з% характер двойной связи (графит). Плоская конфигурация молекулы находится в соответствии со свойствами двойной связи (разд. 6.5). [c.192]

    Молекулярные графы, применяемые в стереохимии и структурной топологии, химии кластеров, полимеров и др., представляют собой неориентированные графы, отображающие строение молекул (рис. 2). Вершины и ребра этих графов отвечают соотв. атомам и хим. связям между ними. [c.611]

    Определение точного аминокислотного состава является первичным обязательным моментом при изучении строения молекулы белка. Без такого определения прежде всего оказалось бы невозможным установление последовательности аминокислотных остатков в пептидной цепи. Помимо этого изучение аминокислотного состава белков позволяет сделать некоторые заключения о реакционной способности белковой молекулы. В табл. 5 представлен аминокислотный состав ряда белков. В графе А указано содержание аминокислот в %, в графе В — в грамм-молях на 10 г белка. Такой подсчет позволяет сопоставлять аминокислотный состав различных белков. В зависимости от содержания в белках аминокислот с различными функциональными группа.ми (кроме а-СООН и г,-NH2), в них могут преобладать кислые или основные, полярные или липотропные группы. [c.482]

    Если допустить, ЧТО фн... с мало зависит от строения молекул углеводорода и графита, то при адсорбции углеводородов на графите (на ГТС) Ф будет зависеть только от влияния на межмолекулярное взаимодействие электронной конфигурации атомов углерода (наличия а-и я-связей, сопряжения я-связей). Поэтому с помощью получаемых в газо-адсорбционной хроматографии констант Генри можно исследовать влияние электронной конфигурации атомов С в углеводородах на их межмолекулярное взаимодействие. [c.82]

    ПРОСТОЕ ВЕЩЕСТВО — простое тело, однородное вещество, состоящее из атомов одного и того же химического элемента форма существования химического элемента в свободном состоянии алмаз, графит, уголь (состоят из атомов углерода, но отличаются по своему строению н свойствам), кислород и озон (отличаются по числу атомов в молекуле и по свойствам) и т. д. [c.205]

    Углерод в любой форме - твердое тело в отличие от своих газообразных соседей по периодической системе элементов. Это объясняется полимерным строением молекул углерода, поэтому и графит, и алмаз, состоящие из одинаковых, только углеродных атомов, относят к полимерам. Любой кристалл алмаза представляет собой, по существу, идеально построенный трехмерный полимер. В графите полимерная упорядоченность распространяется только по плоскости. Существуют и одномерные (линейные) полимеры углерода карбин и поликумулен. Кроме того, углерод известен как единственный элемент, способный образовывать объемные полиэдрические структуры не только путем химического синтеза (кубан, призмейн и Пентагон), но и путем самоорганизации фуллерены). В настоящее время понятие фуллерены применяется к широкому классу многоатомных молекул углерода С (п от 24 и более) и твердым телам на их основе. Однако еще несколько лет назад фуллереном (точнее бакминстерфуллереном) называли молекулу Сбо, атомы которой располагаются на поверхности сферы в вершинах 12 равносторонних пятиугольников и 20 равносторонних шестиугольников. Ее радиус составляет 0,357 нм. Уникальные свойства фуллеренов привлекают внимание ученых всего мира. [c.8]

    Она зависит от молекулярной массы — для родственных веществ увеличивается с ее ростом от агрегатного состояния — увеличивается при переходе от твердого к жидкому и от жидкого к газу от кристаллического строения (графит, алмаз) от изотопного состава (Нз и Ог, НгО и ОгО), от структуры молекул (н-бутан и изобутан). [c.77]

    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном агрегатном состоянии. Она зависит от молекулярной массы — для родственных веществ увеличивается с ее ростом от агрегатного состояния — увеличивается при переходе от твердого к жидкому и от жидкого к газу от кристаллического строения (графит, алмаз) от изотопного состава (Нг и Ог, НгО и ОгО), от структуры молекул ( -бутан и изо-бутан). [c.66]

    Энергия А. зависит от природы и строения молекул адсорбата и их ориентации у поверхности, а также от пр гроды и структ ры адсорбирующей поверхности. Молекулы нормальных углеводородов располагаются вдоль поверхности, энергия их А. поэтому линейно увеличивается с ростом числа атомов углерода в них. Разветвленные молекулы адсорбируются хуже нормальных, т. к. часть звеньев оказывается удаленной от поверхности адсорбента. Энергия А. ароматич. и непредельных углеводородов на непо.пярных адсорбентах (напр., на графите) меньше, чем соответствующих и-алкаиов, и, наоборот, на гидроокисях она больше благодаря сильному взаимодействию облаксш электронов, образующих кратные и ароматич. свя И (и-электронов), с гидроксильными группами поверхности адсорбента. Еще более резко при А. па гидроокисях увеличивается энергия А. полярных молек ул, нанр. спиртов и аминов. [c.21]


    Установленные выше связи между задачей исследования электронного строения квантовой системы, состояш,ей из т л,-электро-нов сопряженной углеводородной молекулы, и задачей исследования спектральных характеристик соответствующего МГ дают возможность интерпретировать последнюю как задачу о квантовой системе, определенной на графе. [c.33]

    Квантовую систему, состоящую из т частиц и определенную на графе Sem вершинами, естественно назвать стабильной, если т четно, а матрица Н имеет в точности т/2 положительных собственных чисел. Такая более общая интерпретация задачи о спектре графа оказывается полезной при исследовании электронного строения полиэдрических и других молекул. [c.34]

    Рассмотрим некоторые графы, которые используются для описания структуры кристаллов. Базисное множество в этом случае образуют либо нейтральные атомы (в ковалентных кристаллах), либо ионы (в ионных кристаллах), либо отдельные молекулы (в молекулярных кристаллах), либо группы молекул. Каждому элементу базисного множества ставится в соответствие вершина. Определяются ближайшие соседи (первая координационная сфера). Две вершины считаются смежными, если соответствующий одной из них элемент базисного множества лежит в первой координационной сфере другого элемента. Такой подход дает возможность абстрагироваться от деталей строения элементов базисного множества, которое может быть достаточно сложным, и изучать неметрические свойства кристаллов, определяемые лишь отношением ближайшего соседства. На этом пути появляются графы с бесконечным числом вершин самой разной природы. Их геометрическую реализацию в трехмерном пространстве, называемую в дальнейшем решеткой, обычно выполняют таким образом, чтобы сохранились основные свойства симметрии кристаллов. [c.42]

    Строение молекулы можно формализовать при помощи теории графов, как это делают Валентинуцци, и получить количественные характеристики структурных параметров. Структурною формулу можно рассматривать как плоский граф, содержащий определенное количество вершин (атомов) и ребер (связей). В первом приближении вершины берутся как бескачественные абстрактные точки, различающиеся лишь числом ребер и своим положенцем на графе. В графе могут встречаться группы однотипных вершин, тождественных по своим характеристикам. Можно рассчитать вероятность нахождения в данном молекулярном графе вершины определенного типа. Так, граф молекулы бензола содержит 12 вершин, из них по шести тождественных для углеродов и водородов. В таком случае вероятность того, что данная вершина окажется атомом углерода, будет Рс = =- . Это же значение имеет вероятность встретить, в вершине атом водорода рн  [c.147]

    Способность элемента к образованию аллотропных модификаций обусловлена строением атома, от которого зависит тип химической связи, а также строение молекул и кристаллов. Так, например, алмаз, графит, карбин и поликумулен состоят только из атомов углерода, но отличаются своими физическими свойствами и химической активностью. Объясняется это тем, что эти модификации углерода обладают разной кристаллической структ турой, разными связями между атомами. [c.5]

    Другой путь ироникновення графов в теоретическую химию связан с квантово-химическими методами расчета электронного строения молекул. [c.9]

    Для алмаза характерно трехмерное расположение атомов углерода в пространстве, на равном расстоянии друг от друга, все атомы связаны ковалентными связями. Алмаз не поглощает свет и отличается больщой твердостью. Графит имеет плоскостное расположение атомов углерода, составляющих правильные шестиугольники, которые по общим граням образуют сетки, г апоми-нающие пчелиные соты (расстояние между атомами 1,42 А). Сетки расположены слоями одна над другой, причем их связь менее прочная (расстояние между ними 3,3 А), поэтому легко расщепляются. Карбин — линейный полимер, существующий в двух формах собственно карбин, представляющий собой цепочку чередующихся одинарных и тройных атомов углерода (С=С-С=С-), и поликумулен — также линейный полимер, но характеризующийся двойными связями атомов углерода в молекуле (С=С=С=С=С). Фуллерен известен только с 1990 г. Он представляет собой полые образования типа футбольного мяча или мяча для регби, соответстенно Сбо и С70. Структурные элементы фуллеренов подобны таковым графита, только плоская гексагональная сетка последнего свернута и сшита в замкнутую сферу или сфероид, при этом часть шестиугольников преобразуется в пятиугольники. В силу полого строения молекул фуллерен обладает небольшой плотностью (1,7 г/см ), что значительно ниже, чем у графита и тем более алмаза. Перспектива использования фуллеренов разнообразна — аккумуляторные батареи, полупроводники, сырье для получения алмазов, основа для запоминающей среды со сверхвысокой плотностью информации. [c.73]

    Матрицы 8 и 82 Баландин [3, 4] назвал структурными матрицами. ( овместно со стехиометрической матрицей X они позволяют находить стационарные суммарные реакции и уравнения их скоростей, константы и порядки, значения концентраций исходных веществ, промежуточных и конечных продуктов, связывая это при необходимости с формулами строения молекул, стереохимическими моделями, свободным вращением атомных групп около валентной связи, аддитивными свойствами, расчетом равновесий, изотермой адсорбции, направлением реакции и т. п. Одновременно структурные матрицы открывают широкие возможности использования аппарата теории графов для представления сложных реакций графически посредством кинетических формул, структурно соответствующих формулам строения молекул, -и посредством стереохимических моделей. Большинство из этих вопросов подробно разработаны Баландиным [3, 4]. [c.37]

    Физическая модель электронного строения молекул, какие бы гипотетические элементы она ни заключала в себе, получает в квантовой химии математическое описание и дальнейшее изучение модели уже проводится математическими методами. Здесь нет возможности и необходимости касаться истории привлечения для теоретической работы различных математических методов (вариационного исчисления Уангом в 1928 г., теории групп Ван Флеком и Малликеном в начале 30-х годов, теории графов в 60-х годах и т. д.), но по-настоящему революционизирующее влияние на развитие квантовой химии оказало появление новой вычислительной техники.  [c.93]

    Простое вещество — вещество, состоящее из атомов одного элемента. Оно может иметь молекулярное или атомное строение. Некоторые элементы образуют несколько простых веществ. Это явление называется аллотропией. Аллотропия может быть связана с разли шым числом атомов в молекуле (например, обычный кислород О2 и озон О3) или рапи щсм в кристаллической решетке для веществ атомного строения (например, алмаз и графит). [c.123]

    Рассмотрим подробнее явление аллотропии. Различают несколько видов ее. Аллотропия строения зависит от различного состава (а отсюда и от различного строения) молекул. Наблюдается она в чистом виде лишь у неметаллов в их газообразном или парообразном состоянии, например собственно кислород (О2) и озон (О3). А л лотропия формы зависит от различия кристаллит ческих форм (проявление полиморфизма). В чистом виде она наблюдается лишь у металлов (у неметаллов в их твердом состоянии аллотропия формы по суш,еству совпадает с алло-тропией строения, то есть молекулам разного со става обычно отвечают разные кристаллические формы). Примеры а-Ре, -Ре, 8-Ре (центриро ванная кубическая решетка) и у-Ре (центрогранная кубическая) сера ромбическая (58), сера призматическая и сера пластическая (5 ) алмаз—графит белый фосфор (Р4) — черный фосфор. [c.324]

    Влияние дейтерирования на удерживание углеводородов. Адсорбционные свойства дейтерия и водорода, как и свойства дейтерирован-ных и обычных углеводородов, несколько различаются (литературу см. в гл. 11 предыдущей книги этой серии [1]). В зависимости от общей массы и строения молекулы, природы поверхности и температуры опыта дейтерированные органические вещества могут адсорбироваться сильнее или слабее соответствующих недейтерированных. соединений. Дейтероуглеводороды на графитированной саже адсор--бируются слабее соответствующих обычных углеводородов, однако на сильно полярных адсорбентах некоторые из них адсорбируются сильнее. В некоторых случаях изменение последовательности удерживания наблюдается при изменении температуры. Поляризуемость дейтерированных углеводородов несколько меньше поляризуемости их недейтерированных аналогов. Поэтому потенциальная энергия дис- персионного взаимодействия дейтерированной молекулы с твердым телом должна быть несколько меньше, чем для недейтерированной молекулы, и удерживание дейтерозамещенных соединений должно быть слабее. В случае хроматографии углеводородов на графите этот эффект, по-видимому, является основным. Противоположные эффекты, связанные с различием энергетических уровней адсорбированных молекул с тяжелым и легким изотопом, быстро убывают с ростом массы и момента инерции молекулы, а также с повышением температуры. Поэтому эти эффекты существенны только для наиболее легких молекул при низких температурах. Влияние различия нулевых энергий дейтерированных и обычных углеводородов может стать -существенным лишь для молекул, в которых большое число атомов Н замещено на атомы D. При газохроматографическом разде-.Ленин дейтерозамещенных углеводородов на графитированной саже. [c.87]

    При обсуждении строения таких молекул, как бензол, мы убедились, что в некоторых случаях электроны могут делокализовываться, или распределяться, по нескольким ядерным центрам. Это происходит при условии, что атомные орбитали одного атома способны взаимодействовать с атомными орбиталями сразу нескольких других атомов. Как мы уже знаем из разд. 8.7, ч. 1, в графите электроны делокализуются в пределах целых атомных плоскостей. Целесообразно подойти к рассмотрению хими- [c.360]

    Третья разновидность углерода — карбин — полимер линейного строения. Звенья цепи полимерной молекулы связаны либо двойными связями (кумуленовый тип) =С = С = С = С = С =, либо чередующимися— простыми и тройными —С=С—С С—С=С— (полииновый тип). Карбин довольно устойчив и лишь при 2000°С переходит в графит. [c.164]

    Графит — устойчивая при нормальных условиях аллотропная форма углерода. Он имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок, оставляет черные следы на бумаге. Графит хорошо проводит теплоту и электрический ток, но его свойства резко анизотропны. Кристаллохимическое строение графита существенно отличается от структуры алмаза. Он имеет гексагональную структуру (рис. 144). Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседями ( р -гибридизация), расположенными вокруг него в виде правильного треугольника на расстоянии 0,412 нм. А расстояние между ближайшими атомами соседних слоев равно 0,340 нм и более чем в два раза превышает кратчайшее расстояние м ду атомами углерода в плоском слое. Поэтому графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки. Химическая связь между атомами углерода внутри слоя имеет ковалентный характер с ярко выраженной склонностью к металлизации. Последняя обусловлена возникновением делокализованных 5Гр.р-связей в пределах шестиугольников (как в молекуле бензола) и всего макрослоя. Этим и объясняются хорошая электрическая проводимость и металлический блеск графита. Углеродные атомы различных слоев связаны слабыми силами Ван-дер-Ваальса. Преимущественно ковалентная связь между атомами углерода внутри слоя сближает графит с алмазом и тот и другой необычайно тугоплавки и обладают малой упругостью паров при нагревании. [c.359]

    С развитием методов спектрального исследования строения вещества и в особенности метода реитгеноструктурного анализа появилась возможность достаточно надежно оценивать относительное и пространственное расноложение атомов. В стру] турной химпи на шли использоваться геометрические модели молекул, которые описывались в терминах графов нового типа — графов с координатами. Эти ] 1)афы могут быть реализованы в пространстве Или в виде различных проеьци па плоскости, причем в зависимости от тика соединеинн используются различные способы изображения. [c.8]

    Метод Хюккеля можно рассматривать как нулевое приближение, с помощью которого удается проанализировать на качественном уровне строгости зависимость электронных характеристик достаточно сложных ненасыщенных органических молекул от их структуры, которая на этом этапе характеризуется учетом лишь отношения соседства н пренебрежением различиями в деталях геометрии. Несмотря на относительную простоту математического аппарата, переход от мономерных систем к олигомерам, а затем и к макромолекулам наталкивается на вычислительные сложности, которые могут быть достаточно эффективно преодолены в случае макромолекул регулярного строения. В этом случае обычно рассматривают макромолекулу с бесконечным числом элементарных фрагментов, а углеродный скелет молекулы описывается в терминах бесконечных графов, обладающих свойствами нериодичнооти. Поэтому исследование л-электронных отектров таких макромолекул сводится к анализу спектра бесконечных МГ. [c.59]

    АЛЛОТРОПИЯ, явление существования хим. элемента в виде двух или неск. простых в-в, различных но строению и св-вам (т. н. аллотропных форм). М. б. обусловлено образованием молекул с разл. числом атомов (напр., О2 и Оз) или разной структурой кристаллов (напр., графит и ал14аз). В последнем случае А.— разновидность полиморфизма. [c.26]


Смотреть страницы где упоминается термин Графит строение молекулы: [c.384]    [c.9]    [c.243]    [c.611]    [c.243]    [c.33]    [c.8]    [c.87]    [c.145]    [c.513]    [c.183]    [c.142]    [c.8]    [c.13]    [c.24]   
Лекции по общему курсу химии (1964) -- [ c.351 , c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графит, строение

Графой

Графы

Молекула строение



© 2025 chem21.info Реклама на сайте