Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скелет молекулярный

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Целлюлоза — один из самых основных видов полимерных материалов, имеет волокнистое строение и является главной составной частью стенок растительных клеток и вместе с сопровождаю-шими ее вешествами (никрустами) составляет твердый остов всех растений. В состав древесины кроме целлюлозы входит большое количество и других органических веществ гемицеллюлозы, лигнина, смол, жиров, белковых веществ, красителей. На долю минеральных веществ приходится всего 0,3—1,1%. В сухой древесине находится от 40 до 60% так называемой а-целлюлозы, т. е. целлюлозы, нерастворимой в 17,5—18%-ном водном растворе едкого натра при комнатной температуре. Молекулярная масса технической целлюлозы, имеющей регулярное и строго линейное строение, колеблется от 50 000 до 150 000 и выше. Целлюлоза придает растительной ткани механическую прочность и эластичность, образуя как бы скелет растения. [c.201]

    Углеродный скелет молекулярной цепи политетрафторэтилена насыщен атомами фтора, образующими с атомами углерода одну из самых прочных связей из числа известных в органической химии. [c.195]

    Перегруппировки с изменением углеродного скелета — молекулярные перегруппировки — проходят чаще всего по электрофильному механизму. Менее часты нуклеофильные процессы. Перегруппировки с циклическими электронными переходами относительно редки. [c.301]

    Молекулярная структура компонентов битума. Структуры компонентов битума имеют большое сходство. Каркас структуры молекул образуется углеродным скелетом, составляющим 30—90% общей массы молекул. Как показано в работе [7], центральное ядро молекулы составляет полициклическая система, в состав которой входят шестичленные карбоциклические, преимущественно бензольные и отчасти циклопентановые и гетероциклические, кольца. Большая часть колец образует конденсированную полициклическую систему, в основном ароматическую. На периферии этой системы часть водорода замещена на ме-тильные группы и короткие (Сг—С4) разветвленные и нераз-ветвленные алифатические цепочки. Заместители могут включать и функциональные группы. [c.10]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]


    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]

    Поскольку угли кроме углерода и водорода содержат кислород, азот и серу, молекулярный объем вычисляется для того случая, если эти элементы отсутствуют. Исправленный молекулярный объем, относящийся к соответствующему углеводороду с той же структурой углеродного скелета, вычисляется по уравнению [c.208]

    При удалении групп сернистых соединений без достаточных оснований предполагается, что все соединения данной группы в аналитическом смысле ведут себя одинаково вне зависимости от молекулярного веса и строения углеводородного скелета, что, конечно, совершенно неверно. Последовательное удаление групп сернистых соединений (обычно в виде осадков) приводит к потерям некоторой части соединений последующих групп за счет адсорбции на осадках, селективного вымывания применяемыми растворителями в результате побочных реакций реактивов с соединениями других групп. Эти выводы следуют из работы С. С. Наметкина и сотрудников 178] но тщательной проверке метода Фарагера и метода Броуна на искусственных растворах индивидуальных сернистых соединений. [c.427]

    О генетической связи между высокомолекулярными углеводородами, смолами и асфальтенами нефтей свидетельствует значительное сходство их углеродного скелета. Подобно высокомолекулярным полициклическим структурам гибридного строения, преимущественно нафтено-ароматическим углеводородам, высокомолекулярные неуглеводородные компоненты — смолисто-асфальтеновые вещества нефти — характеризуются аналогичным углеродным скелетом. Однако, наряду со сходством в строении углеродного скелета трех основных высокомолекулярных составляющих нефтей (углеводородов, смол и асфальтенов), имеются и весьма серьезные различия в их молекулярной структуре. В генетически связанном ряду высокомолекулярные углеводороды— -смолы— -асфальтены наблюдается тенденция постепенного обеднения водородом и обогащения углеродом возрастает доля ароматических эяе- [c.39]

    Влияние состава и строения углеводородов Са—Се и простых эфиров на полноту осаждения асфальтенов иллюстрируется данными табл. 22. В качестве объекта был взят остаточный битум из мексиканской нефти (т. размягч. 57° С по методу кольца и шара пенетрация при 25° С равна 46) [4]. Обработка этого остаточного битума при комнатной температуре равными объемами разных растворителей дала данные, приведенные в табл. 22. Как в ряду парафиновых углеводородов, так и в ряду простых эфиров, примененных в качестве осадителей асфальтенов, отчетливо проявляется влияние двух факторов — состава и строения этих веществ — на растворяющую способность их в отношении асфальтенов чем выше молекулярный вес углеводородной части молекулы и чем больше степень разветвления углеродного скелета, тем выше растворяющая способность их в отношении асфальтенов, или, что то же самое, тем меньше количество осаждаемых ими асфальтенов из раствора. Циклогексан и его метил-и этилзамещенные полностью растворяют первичные асфальтены (асфальтены в осадок не выпадали). [c.72]

    Общие элементы в строении углеродного скелета всех высокомолекулярных соединений нефти, а также близость элементного состава смол и асфальтенов, несомненно, говорят о наличии генетической связи в ряду углеводороды—смолы—асфальтены. Это подтверждено экспериментально при мягком каталитическом гидрировании асфальтенов и смол получены углеводороды и смолы по своему составу, строению и молекулярным весам близкие к соединениям, выделенным из тех же сырых нефтей [6, 7]. [c.93]

    Если линейный размер структурных элементов пористого тела настолько мал, что становится сопоставимым с длиной свободного пробега молекул (например, при кнудсеновской диффузии молекул газа в порах катализатора), то целесообразно применение так называемой модели пылевидного газа [55, 56], представляющей элементы твердого скелета пористого тела в виде тяжелых неподвижных макромолекул, способных рассеивать, адсорбировать и десорбировать молекулы газовой смеси. Иными словами, твердое вещество пористого материала формально рассматривается как равноправный компонент газовой смеси (пылевидный компонент) со своей концентрацией, молекулярной массой, парциальным давлением и т. п. Газовую смесь вместе с пылевидным компонентом называют псевдогазовой. В рамках модели пылевидного газа в принципе удается преодолеть основные трудности квази- [c.141]


    Поскольку жирные кислоты, образующиеся лри деструкции углеродного скелета, подвергаются дальнейше.му окислению значительно быстрее, чем исходный углеводород, закономерности окисления нарафи-нон довольно сильно замаскированы. В результате получается, что при несколько повышенных превращениях относительное содержание низших кислот в продуктах реакции увеличцвается. Чем выше молекулярный вес исходного парафина, тем резче это происходит. [c.586]

    По строению молекулярного скелета органические соединения подразделяются иа I) алифатические, или ациклические,— соединения с открытой цепью углеродных атомов 2) карбоцикличес-кис — соединения, содержащие замкнутые в цикл цепи углеродных атомов, и 3) гетероциклические — соединения, содержащие в цикле кроме углеродных другие многовалентные атомы, например кислорода, серы, азота. [c.141]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    Номенклатура органических соединений. Систематическая номенклатура органических соединений исходит из строения молекулярного скелета соединений. Названия соединений составляются из корня и приставок (суффиксов). В на 5ваниях предельных углеводородов используется приставка ан, непредельных с одной двойной связью — ен, непредельных с двумя двойными связями — диен, непредельных с тройной СВЯЗ11Ю — ин. Корни наименований в зависимости от числа углеродных атомов в скелете образуются ИЗ греческих числительных С5 — пент, Се — гекс, С — гет, Са — окт и т. д., первые четыре предельные углеводорода с нормальной (не разветвленной) цепью имеют эмпирические названия С — метан, С2 — этан, С3 —пропан, С4 — бутан. В названиях алициклических углеводородов перед корнем ставится приставка цикло , а после корня — соответствующие суффиксы ан, ен, диен. Названия соединений, содержащих различные функциональные группы, составляются из названия углеводорода, произ- [c.143]

    Идентифицпровать соединение — это значит определить его химический состав и структуру. Под структурой будем понимать молекулярный граф, в котором атомы представляются вершинами, а химические связи — ребрами [66]. Такой граф описывает связность атомов в молекулярном скелете независимо от метрических свойств данной химической структуры, т. е. топологию соединения, а не его пространственное расположение. [c.91]

    Был термодинамически обоснован вероятный механизм образования больших количеств изопарафинов Он включает стадии образования олефинов нормального или изостроения, изомеризацию углеводородного, скелета первых и превращение изоолефинов в изопарафины. Олефины образуются при крекйнге парафиновых углеводородов большего молекулярного веса. При этом возможна. промежуточная изомеризация исходного к-парафина  [c.313]

    Некоторые структурные параметры, особенно среднюю ароматичность, удобнее определять по спектрам ЯМР С, так как последние непосредственно отражают особенности углеродного скелета. Этот способ молекулярной спектроскопии, чрезвычайно информативный при анализе индивидуальных соединений или очень-узких фракций, в нефтяном анализе использовался, как это ни парадоксально, при изучении лишь самых сложных смесец ГАС нефтяных остатков, битумов, асфальтенов [69, 241, 242 и др.]. [c.31]

    Судя по форме газохроматографических пиков тиамоноцикланов с неразветвленным углеродным скелетом (см. рис. 2.5, а), эти соединения образуют единый гомологический ряд, в котором размеры заместителей Rj и Rj не произвольны, а строго закономерны. Скорее всего в молекулах соединений (VII) и (VIII) Ri=H или СНз (второй вариант вероятнее), и нарастание молекулярной массы в гомологическом ряду идет за счет последовательного удлинения цепочки Rj. [c.62]

    В группу веществ, именуемых нефтяными смолами, входят соединения с развитыми углеводородными скелетами и гетероатомами в форме разнообразных функциональных групп. При использовании адсорбционных способов выделения в смолистые фракции попадают и сравнительно пизкомолекулярные (с молекулярными массами до 500—600 ед.) гетероатомные соединения, главным образом полициклические, в том числе и такие, принадлежность которых к определенным гомологическим рядам установлена с помощью современных аналитических методов (например, полиарено- или нолинафтенонроизводные различных гетероциклических соединений). [c.199]

    Квазипланарпая пли гроздевидная, а точнее пространственно не упорядоченная структура характерна для молекул асфальтенов пз нефтей, не подвергшихся существенным катагенным изме-непням из-за сравнительно небольшого возраста и/или залегания на малых глубинах. В основе таких молекул лежат от одного до нескольких ароматических ядер, содержащих в среднем не более трех-четырех сконденсированных бензольных колец каждое значительно выше роль в молекуле нафтеновых циклов и алифатических цепей. Такие асфальтены почти не отличаются от смол той же нефти по фрагмептно.му составу, построены из таких же углеводородных скелетов и гетероатомных функций в близких средних пропорциях, но обладают большими молекулярными массами и габаритами молекул. В зависимости от состава углеводородной части нефти (чаще всего нафтенового) эти асфальтены могут давать в ней как истинные, так и коллоидные растворы. [c.200]

    Все органические соединения подразделяются иа классы по разным признакам — строению молекулярного скелета, наличию тех или иных связей между углеродными атомами и наличию в составе соединения тех нли иных атомов или так называемых функциональных груни, под которыми подразумеваются специфические 1 руппировки атомов, сообщающие соединениям определенные химические свойства. [c.141]

    Температура в непроточной зоне практически равна температуре на поверхности зерна. Поэтому одним из тепловых элементов модели слоя является так называемый скелет или каркас слоя, состоящий из зерен и непроточных зон. Величина коэффициента эффективной теплопроводности Хек определяется по выражению Хск = = А/.м + 0,85 Re Рг Ям, где произведение А — это теплопроводность непродуваемого слоя, Рг — критерий Прандтля, — коэффициент молекулярной тенлонроводности, А = onst. Для подавляющего большинства каталитических процессов, осуществляемых при неизменных условиях на входе в аппарат, нет необходимости учитывать продольный перенос тепла и вещества, обусловленный молекулярной и вихревой диффузиями (D и Da), теплопроводностью (Х и в свободном объеме слоя и переносом тепла по скелету катализа- [c.72]

    Обеспарафиненная (двукратным охлаждением до 0°) дизельная фракция имела уд. вес = 0,773 и средний молекулярный 216 (отвечающий нентадекану), содержание непредельных углеводородов оказалось равным 7%. После удаления гидрированием непредельных углеводородов тщательной фрак-ционировкой было установлено, что когазин II на 40% состоит из нормальных парафиновых углеводородов (из которых можно выделить в чистом состоянии индивидуальные углеводороды от октана до октадекана включительно) и на 60% из изопарафиновых углеводородов с мало разветвленными скелетами. Было показано, что из когазина II могут быть получены и дизельные топлива с низкими температурами замерзания. Последние получаются путем удаления из когазина II углеводородов с высокой температурой плавления охлаждением до—10°, —20°, —30° при этом выходы низкозастывающих фракций составляли соответственно 78, 62,5 и 45%. [c.200]

    Несмотря на различную физическую сущность этих процессов, для них характерно уменьшение скорости по сравнению со скоростью молекулярной диффузии в аналогичных случаях. Поэтому в научно-технической литературе при описании указанных процессов пользуются термином стесненная диффузия . Стеснение объясняется механическим преграждением диффузионного потока самим скелетом твердого пористого тела и сопротивлением движением молекул, обусловленным непосредственной близостью этих молекул к неподвижным стенкам, образуемым пopи тoii средой. [c.273]

    Уже отмечалось, что состав и строение нефтяных смол и асфальтенов имеют много общего, прежде всего, это сходство элементов структуры углеродного скелета и их элементного состава. В сырых нефтях и в тяжелых остатках от прямой перегонки нефтей значение величин отношения смолы/асфальтены варьирует, как правило, в пределах от 9 1 до 7 3, а в окисленных битумах и тяжелых крекинг-остатках — от 7 3 до 1 1 [6]. Большая физическая и химическая гетерогенность смолисто-асфальтеновых веществ, слабая термическая стабильность и близость структуры и элементного состава их молекул делают крайне трудной задачу их разделения и нахождения четкой границы раздела, если таковая существует. В распределении по молекулярным весам нефтяных асфальтенов и смол есть известное подобие спектру полимергомологов — от олигомеров до высокомолекулярных полимеров. Различие в элементном составе смол и асфальтенов иллюстрируется данными, полученными разными исследователями на обширном материале нефтей, асфальтов и тяжелых нефтяных остатков. Асфальтены, как правило, осаждались н-пентаном и переосаждались из бензольного раствора смолы си-ликагелевые, т. е. выделенные адсорбционной хроматографией на крупнопористом силикагеле. [c.45]

    В окисленном асфальте сильно повышается величина отношения асфальтейы/смолы, что результируется в некотором увеличена его молекулярного веса, повышении твердости и хрупкости, снижении эластичности температура размягчения повышается, не-нетрация снижается. В элементном составе наблюдается изменение идет заметное обогащение серой и углеродом и обеднение водородом (отношение С/Н повышается). Почти весь кислород, содержащийся в 302, выделяется в виде реакционной воды. Это обстоятельство, а также накопление серы в окисленном битуме, несомненно, указывают на то, что основным агентом дегидрирования при воздействии па нефтяные остатки двуокиси серы является содержащийся в ней кислород сера же, если и участвует в процессе дегидрирования, то лишь в незначительной степени. Основное направление ее действия состоит в сшивании углеродных скелетов с образованием трехмерных структур. Процесс этот напоминает вулканизацию каучука при нагревании с элементной серой. Вновь образовавшиеся молекулы асфальтенов в результате конденсации двух и более молекул ароматизированных в результате дегидрирования углеводородов и смол способствуют накоплению в битуме более жестких с меньшим молекулярным весом асфальтенов, чем первичные асфальтены. Эти новые полициклоароматические кон- [c.85]

    По мнению В. И. Касаточкина, процесс метаморфизма угля сопровождается упорядочиванием углеродистого вещества, т. е. структуры углеродного скелета иод воздействием двух процессов чисто химического процесса конденсации углерода в форме гексагональных плоских атомных сеток типа графитных базисных углеродоатомных сеток и ориентации этих параллельно расположенных сеток в пакеты с образованием мезоморфных областей упорядоченности углерода. Па рис. 13 представлено строение витрена по В. И. Касаточкпну. Плоские сетки, состоящие из гексагональных карбоциклов (конденсированные структуры из бензольных колец), валентно связаны между собой периферийными молекулярными [c.95]


Смотреть страницы где упоминается термин Скелет молекулярный: [c.25]    [c.75]    [c.271]    [c.13]    [c.110]    [c.234]    [c.70]    [c.13]    [c.29]    [c.271]    [c.303]    [c.275]    [c.237]    [c.77]    [c.100]    [c.12]    [c.45]    [c.93]    [c.169]   
Химические приложения топологии и теории графов (1987) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Деформация молекулярного скелета

Строение молекулярного скелета



© 2025 chem21.info Реклама на сайте