Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

П1Н Длины волн и энергии линий характеристического излучения (по элементам)

    Длины волн и энергии линий характеристического излучения (по элементам) [c.56]

    Энергия кванта характеристического излучения равна разности энергетических состояний электронов на уровнях до перехода и после него. Поскольку в атоме такие разности дискретны и индивидуальны для каждого элемента, то и характеристическое излучение представлено дискретными по длине волны линиями. Схема энергетических уровней атома, разрешенных переходов и систематика наименований характеристических линий показана на рис. 14.77. [c.5]


    Характеристический рентгеновский спектр образуется, когда энергия электронов превосходит порог возбуждения, характерный для атомов анодного вещества (рис. 52). Длина волны однородного характеристического излучения зависит от вещества анода и не зависит от приложенного напряжения. Характеристический рентгеновский спектр состоит из нескольких групп линий (серий), значительно отличающихся друг от друга по длине волны. Для более тяжелых элементов таких серий четыре К. I, М, N. Каждая  [c.109]

    Для качественного рентгенофлуоресцентного анализа важно, чтобы энергия полихроматического излучения (излучения различных длин волн) рентгеновской трубки была равна или превышала энергию, необходимую для выбивания /(-электронов элементов, входящих в состав анализируемой пробы. В этом случае спектр вторичного рентгеновского излучения содержит характеристические рентгеновские линии, длина волны которых соответствует приведенным в таблице данным. Избыточная энергия первичного излучения трубки (сверх необходимой для удаления /(-электронов) высвобождается в виде кинетической энергии фотоэлектрона. [c.781]

    Характеристические рентгеновские лучи возникают при отрыве электронов с К-, L- и М-оболочек атома с последующим возвращением атома из возбужденного состояния в нормальное путем перехода внешних электронов на вакантные места внутренних оболочек. Атомы с определенным атомным номером излучают строго определенные по длинам волн рентгеновские фотоны. Диапазон длин волн лежит от 0,005 до 37,5 нм, длина волны излучения уменьшается с ростом Z. Пиковая интенсивность характеристических линий / является функцией ускоряющего электрона напряжения (энергии зонда о), критического потенциала возбуждения кр данного элемента и тока зонда i  [c.221]

    Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при торможении электронов антикатодом рентгеновской трубки оно разлагается в сплошной спектр, имеющий резкую границу со стороны малых длин волн. Положение этой границы определяется энергией падающих на вещество электронов (чем больше эта энергия, тем в большей мере коротковолновая граница спектра смещается в сторону более коротких волн) и не зависит от природы вещества. Характеристич. Р. л. образуются при выбивании электрона одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внешнего слоя. Они обладают линейчатым спектром, аналогичным оптич. спектрам газов. Однако между теми и другими спектрами имеется принципиальная разница структура характеристич. спектра Р. л. (число, относительное расположение и относительная яркость линий), в отличие от оптич. спектра газов, пе зависит от вещества (элемента), дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в системе Менделеева весь его характеристич. рентгеновский спектр смещается в сторону [c.325]


    Атомы и молекулы газов при нагревании или при возбуждении их электрической искрой испускают свет с определенными длинами волн. Принято считать, что свет, испускаемый атомом или молекулой в этих условиях, дает спектр испускания. Спектры испускания щелочных металлов, ртути и неона приведены на рис. 21.1. По спектрам испускания элементов, особенно металлов, можно идентифицировать эти элементы— спектроскопический химический анализ представляет собой важный метод аналитической химии. Твердое тело в нагретом состоянии испускает свет, причем распределение интенсивности в зависимости от длины волны является характерным для химического состава данного тела. Во второй половине XIX в. было открыто, что спектр испускания лучистой энергии, проникающей через небольшое отверстие из внутренней полости нагретого твердого тела, не имеет характеристических линий, а отличается равномерным распределением интенсивности излучения по длинам волн, характерным для каждой данной температуры и не зависящим от природы нагретого твердого тела. Кривые такого распределения приведены на рис. 3.19. Воспроизведенные на рисунке кривые наглядно показывают, что при низких температурах, не превышающих 4000 К, ббльшая часть лучистой энергии приходится на долю инфракрасного излучения и лишь меньшая часть — на долю видимого света с длиной волны в интервале 400—800 нм. При температуре 6000 К максимальная энергия приходится [c.63]

    Если энергия воздействия на атом достаточна для появления одной из линий в их группе, появляются все линии этой группы, так как основное условие — отсутствие электрона на данном уровне с возможным переходом из других уровней — выполнено. Это говорит о том, что /С-серия имеет один критический потенциал возбуждения, -серия — три, М-серия — пять. Если энергия воздействия достаточна для возбуждения /С-серии, то появляются и все другие серии, но если в спектре присутствует -серия, то это не значит, что обязательно появятся и линии /С-серии. Это говорит о том, что энергия фотонов, а следовательно и длины волн излучения, зависят лишь от рода вещества. Но не от энергии воздействия, хотя и обязаны ей своим появлением. С увеличением атомного номера излучающего элемента линии всех серий смещаются в сторону более коротких волн (см. рис. 77). Дискретные по своей природе спектры называют характеристическими, т. е. характерными для излучающих элементов. [c.8]

    Глава 1. Взаимодействие рентгеновских лучей с веществом и рентгеновские спектры. 1-1. Характеристическое рентгеновское излучение (длины волн К-серии рентгеновского излучения, длины волн Ь-серии рентг(Шовского излучения, относительные интенсивности линий if-серии характеристического спектра, ширина линий характеристического спектра, индексы асимметрии линий характеристического спектра). 1-2. Перевод С-единиц в абсолютные ангстремы. 1-3. Соотношения между единицами коэффициентов поглощения. 1-4. Рассеяние рентгеновских лучей (рассеяние рентгеновских лучей различных энергий электронными оболочками и ядрами атомов, рассеяние рентгеновских лучей в газах, массовые коэффициенты рассеяния рентгеновских лучей, массовые коэффициенты рассеяния о /р, коэффициенты рассеяния сечения некогерентного рассеяния рентгеновских лучей). 1-5. Поглощение рентгеновских лучей (скачок поглощения для некоторых элементов, вычисление коэффициентов поглощения, номограмма для определения коэффициентов поглощения). 1-6. Суммарное ослабление рентгеновских лучей (атомные коэффициенты ослабления для элементов, массовые коэффициенты ослабления у,/р для элементов, массовые коэффициенты ослабления ц/р для больших длин волн, массовые коэффициенты ослабления ц/р для малых длин волн, массовые коэффициенты ослабления ц/р для некоторых соединений, толщина слоя половинного ослабления рентгеновских лучей для некоторых элементов, толщина слоя ослабления при различных углах падения лучей на образец). 1-7. Ионизирующее действие рентгеновских лучей. 1-8. Преломление рентгеновских лучей (единичные декременты показателя преломления, углы полного внутреннего отражения). [c.320]

    М-липии, возникающие благодаря вакансии в одной из пяти М-подоболочек, в РФ-апализе используют редко. М-линии тяжелых элементов (РЬ) могут налагаться на К- и Ь-линии элементов с меньшим атомным номером Z. Энергии характеристического рентгеновского излучения некоторых элементов приведены в табл. 8.3-6, соответствующие им характеристические длины волн мохут быть найдены из уравнения 8.3-2. [c.67]


    Для измерения энергии и интенсивности характеристического рентгеновского излучения используют спектрометры с волновой и энергетической дисперсией (рис. 10-2.9). Энергодисперсионные рентгеновские спектрометры регистрируют одновременно все длины волн в спектре, позволяя проводить определение элементов от Ве до и (при использовании безоконных детекторов). Эти спектрометры состоят из полупроводникового детектора (кремния, легированного литием), преобразующего энергию фотонов в электрические импульсы, напряжение которых пропорционально энергии фотонов. Таким образом происходит дискриминация фотонов по энергиям. Разрешение энергодисперсионных спектрометров составляет около 140 эВ для линий средней энергии [c.333]

    Быстро развивается и показывает хорошие результаты рентгенофлуоресцентный метод, основанный на том, что падающее первичное излучение создает при взаимодействии с материалом покрытия характеристические электромагнитные волны [25], имеющие кванты определенных длин волн и интенсивности. Спектральный состав излучения зависит от того, какие элементы имеются в материалах контролируемого объекта, а интенсивность — от массы данного элемента. Подбирая фильтры, выделяющие необходимую спектральную линию, характерную для материала покрытия, анализируя интенсивность и энергию квантов вторичного излучения с помощью различных электронных дискриминаторов, можно определить толщину одного или нескольких не очень толстых покрытий. Используемые при рентгенофлуоресцентном методе эффекты более сложны в приборной реализации, поэтому аппаратура на базе этого метода пока не выпускается крупными сериями. Вместе с тем имеются примеры успешного внедрения таких приборов в практику неразрушающего контроля толщин покрытий при разных сочетаниях материалов хром, олово, цинк, алюминий, титан или серебро на стали, медь на алюминии, хром на цинке, кадмий на титане и др. Решающим фактором применимости рентгенофлуоресцентного метода является наличие достаточной интенсивности вторичного излучения в диапазоне, где его регистрация эффективна. Также его ценным качеством является возможность из гpeний толщины многослойных покрытий, причем, когда их толщины соизмеримы, можно проводить в ряде случаев раздельный контроль. Успешно производится измерение толщины серебра на фотобумаге и ферролаковом покрытии. [c.352]

    В связи с тем, что характеристические лучи К-, L- и отчасти Л1-серий возникают при переходах электронов на внутренних уровнях атома, энергия электронов на которых практически не зависит от степени ионизации атомов, длины волн характеристического спектра практически одинаковы независимо от того, какие соединения данный атом образует. Поэтому, если разложить в спектр характеристическое рентгеновское излучение, образующееся при возбуждении мишени, состоящей из атомов разного сорта, то по наличию спектральных линий тех или инЫх элементов можно определить качественный, а по их интенсивности количественный элементный состав мишени. Всего проще спектр можно получить, направляя на монокристалл, у которого параллельно поверхности расположены плоскости (hkl) с межплоскостным расстоянием dhhi, полихроматическое излучение, которое отражается от монокристалла в соответствии с законом Вульфа—Брэгга (см. гл. 6) 2dhhtsinu= = пХ, где — угол, под которым на кристалл падает рентгеновское излучение. Поворачивая кристалл (меняя ), можно добиться отражения излучения с разной длиной волны. [c.146]


Смотреть страницы где упоминается термин П1Н Длины волн и энергии линий характеристического излучения (по элементам): [c.205]    [c.312]   
Смотреть главы в:

Новый справочник химика и технолога Аналитическая химия Часть 3 -> П1Н Длины волн и энергии линий характеристического излучения (по элементам)




ПОИСК





Смотрите так же термины и статьи:

Длина волны

Длина волны излучения

Излучение, длина волны и энергия

Линия излучения

Линия характеристическая

Характеристическое излучение

Характеристическое излучение длины волн

Энергия излучения



© 2024 chem21.info Реклама на сайте