Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие рентгеновских лучей с кристаллами

    Получив некоторое представление о свойствах симметрии внутренней структуры кристалла, займемся теперь анализом взаимодействия рентгеновских лучей с этим кристаллом. Для этого используем соотно- [c.374]

    По Брэггу, взаимодействие рентгеновских лучей с кристаллом можно формально рассматривать как отражение и, исходя из этого, найти условие появления интерференционного максимума. [c.443]

    Взаимодействие рентгеновских лучей с кристаллами [c.240]

    При взаимодействии рентгеновских лучей с кристаллом существенно то, что только при наличии определенного соотношения между длиной волны X и периодом кристаллической решетки волны, рассеянные отдельными атомами, будут интерферировать. Интерференционная картина, которую также называют дифракционной, состоит из множества дифракционных полос. Дифрагированный луч нужно рассматривать также как луч, отраженный кристаллографической плоскостью (hkl) (рис. 6.5), что позволяет с помощью уравнения Брэгга определить углы отражения  [c.241]


    При взаимодействии рентгеновских лучей с кристаллом происходит их рассеяние на электронах атомов, составляющих кристаллы. Кристалл можно рассматривать как непрерывную среду с периодически повторяющимся трехмерным распределением электронной плоскости, к-рая, следовательно, м. б. разложена в ряд Фурье. Разложение в ряд Фурье функции электронной плотности р в точке элементарной ячейки с координатами (х, у, z) имеет вид (для кристаллов с центром симметрии)  [c.330]

    Лауэ и его коллеги показали, что дифракционные картины, получаемые ими при взаимодействии рентгеновских лучей с кристаллами, естественно, объясняются предположением о существовании очень коротких электромагнитных волн.. .. Пятна этих картин представляют собой интерференционные максимумы волн, дифрагированных периодически расположенными атомами кристалла. . . Эти волны должны закономерно отражаться от некоторой (подходящей) поверхности. .. Такими поверхностями являются плоскости спайности кристалла. . . Брэгг [25]. [c.35]

    Но информацию о структуре кристалла дает нам третий механизм взаимодействия рентгеновских лучей с веществом — рассеяние рентгеновских лучей на электронных оболочках атомов без изменения длины волны. Обратите внимание на слова без изменения длины волны —это очень важно. [c.119]

    Согласно динамической теории рассеяния рентгеновских лучей, интегральная интенсивность интерференционных максимумов рентгенограммы от крупных кристаллов ослабляется из-за взаимодействия (экстинкции) первичного пучка рентгеновских лучей с лучами, отраженными от атомных плоскостей кристалла в соответствии с уравнением Вульфа — Брэгга. Интенсивность лучей, отраженных от идеально мозаичного кристалла, во много раз больше, чем от крупного совершенного, в котором происходит многократное взаимодействие рентгеновских лучей. [c.141]

    Рассматривая в предыдущих разделах связь между расположением атомов в кристалле и интенсивностью дифракционных лучей, мы существенно упрощали задачу. Предполагалось, что электромагнитные волны первичного пучка, воздействующие на различные атомы кристалла, обладают одинаковой амплитудой независимо от глубины расположения этих атомов. Между тем это неверно все известные нам процессы взаимодействия рентгеновских лучей с веществом — поглощение, когерентное и некогерентное рассеяние — приводят к постепенной потере энергии первичного пучка лучей, т. е. к уменьшению амплитуды их волн. [c.61]

    В трактовке дифракции рентгеновских лучей кристаллами белка н его изоморфных производных предполагается, что принадлежащие атомам электроны являются свободными и в таком состоянии приводятся в вынужденные колебания с частотой со, равной частоте первичного рентгеновского излучения Амплитуда нормального, упругого рассеяния [/°(0)] зависит от брэгговского угла (0), определяющего направление в пространстве дифрагированного луча, но не зависит от длины волны (X). В общем случае это предположение некорректно, поскольку электроны в атомах не являются свободными, а взаимодействуют, особенно эффективно на внутренних К- и -орбиталях, с ядром и друг с другом. В классической теории рассеивающие атомные центры рассматриваются наборами дипольных осцилляторов, имеющих собственные частоты колебаний (0)5), которые равны частотам поглощаемого атомом электромагнитного излучения. Когда частота падающей волны значительно отличается от частот собственных колебаний электронов (о) > 0) или ш a)J), интенсивность дифрагированного луча практически полностью определяется нормальным рассеянием, и поэтому поглощением обычно пренебрегают, т.е. считают 0)5 = 0. Однако если частота рентгеновского излучения становится сопоставимой с частотами собственных колебаний электронов (со со ), возникает резонанс, изменяющий амплитуду и фазу рассеяния. Имеет место аномальное рассеяние. [c.157]


    При структурных исследованиях кристаллических веществ используется взаимодействие рентгеновского излучения с кристаллом. При этом проникающие в кристалл рентгеновские лучи (с длиной волны I) всегда отражаются от атомов (ионов) кристаллической решетки под углом а в соответствии с формулой Вульфа — Брэгга  [c.110]

    Для проведения рентгеноструктурного анализа исследуемый кристаллический образец помещают на пути рентгеновского луча с длиной волны от 0,07 до 1 нм, который взаимодействует с кристаллом. В итоге получается дифракционная картина, регистрируемая или с помощью фотоэмульсии, или специальным электронным детектором. Анализируя ее, находят пространственное расположе- [c.117]

    Метод Лауэ применяют для исследования структуры монокристаллов. Монокристаллический образец помещается на пути рентгеновского луча, обладающего сплошным спектром (рис. 5 6, а). Этот немонохроматический луч, падая на кристалл, взаимодейству- [c.118]

    Оценки показывают, что показатель преломления рентгеновских лучей меньше единицы и отличается от единицы на несколько миллионных. Проведенный расчет относится к кристаллу и аморфному веществу того же состава и плотности. При возникновении селективных отражений нужно учитывать их взаимодействие с первичным пучком, что приводит к небольшим отклонениям от простой формулы Вульфа — Брегга. [c.93]

    По общему принципу они родственны друг другу (основаны па эффекте дифракции), но каждый, конечно, имеет свои специфические черты, так как характер взаимодействия воли разной природы с атомами кристалла различен. Рентгеновские лучи рассеиваются электронами атомов, поток нейтронов — ядрами, а поток электронов — электромагнитным полем ядра и электронов. [c.47]

    Связь структурного фактора с электронными свойствами металлов. Одним из физических свойств металлов, непосредственно связанных с ближним порядком и энергией взаимодействия частиц, является электропроводность. Развитие квантовой теории твердого тела привело к выводу, что электропроводность жидких металлов можно вычислить теоретически по экспериментальным данным для структурного фактора а(5), задавая Фурье-образ потенциальной энергии взаимодействия электронов с атомами расплава. Основная идея, на которой базируются расчеты электропроводности, состоит в том, что рассеяние электронов проводимости жидкого металла описывается структурным фактором, аналогичным для рентгеновского излучения или нейтронов. Заметим, что структурный фактор рассеяния электронов проводимости ограничен значениями 5, которые для одновалентных металлов находятся слева от первого максимума а 8), а для двух (и более) валентных металлов —справа от него. В то же время, по данным рассеяния медленных нейтронов и рентгеновских лучей длиной волны X = 0,5—0,7 А, структурный фактор определяется до 5 = 15—20 А"1. Выясним, чем же обусловлено такое различие а(5). По современным представлениям, электроны проводимости металла нельзя рассматривать как свободные. Их движение в кристалле модулировано периодическим силовым полем решетки. Непрерывный энергетический спектр свободных электронов в -пространстве распадается на зоны разрешенных энергий — зоны Бриллюэна, разделенные интервалами энергий, запрещенными для электронов. На шкале энергий Е к) зоны Бриллюэна изображают графически в виде полос разрешенных значений энергии и разрывов между ними (рис. 2,13). В трехмерном/г-пространстве они имеют вид многогранников, форма которых определяется симметрией кристаллических решеток, а размеры — параметрами решетки. Для гранецентрированной кубической решетки первая зона Бриллюэна представляет собой октаэдр, а для объемно-центрированной решетки — кубический додекаэдр. [c.52]

    Вследствие того что длина волны рентгеновского излучения имеет приблизительно такую же величину, как диаметры атомов, с помощью рентгеновских лучей можно получать однозначную информацию о расстояниях между атомами и о расположении атомов внутри кристаллических веществ. На рис. 10.9 схематически изображен пучок рентгеновских лучей, взаимодействующих с кристаллом. Кристаллическая структура представлена на этом рисунке слоями атомов или ионов, расположенными на расстоянии с1 друг от друга. Пучок рентгеновских лучей проникает сквозь многие слои кристалла, постепенно рассеиваясь атомными электронами. Хотя рассеяние рентгеновских лучей происходит во всех направлениях, на рисунке показаны только два из них. В одном из этих направлений, под углом а, происходит рассеяние волн с противоположными фазами, которые ослабляют друг друга, и в результате в точке А нельзя обнаружить рентгеновских лучей. В отличие от этого волны, рассеиваемые под углом Ь, обладают одинаковыми фазами и усиливают друг друга, что позволяет обнаружить рентгеновские лучи в точке В. При еще больших углах происходит последовательное ослабление и усиление волн (см. рис. 2.10), что приводит к возникновению дифракционных максимумов и минимумов более высоких порядков. [c.173]


    Возможны два случая взаимодействия образца с монохроматическим пучком рентгеновских лучей образцы с кристаллической структурой рассеивают лучи когерентно без изменения длины волны, т.е. рассеяние сопровождается дифракцией лучей от образцов с нерегулярной структурой, т.е. содержащих аморфные и кристаллические области, рассеяние происходит некогерентно и сопровождается изменением длины волны. На этом основано использование рентгеноструктурного анализа для оценки структурной упорядоченности в расположении макромолекул и их частей. Интенсивность и направление рентгеновских лучей, претерпевших дифракцию на кристалле, регистрируют счетчиком квантов (счетчиком Гейгера или др.) или фотографически. [c.168]

    Рентгеновский фазовый анализ представляет собой метод качественного и количественного определения фазового состава поликристаллических образцов, основанный на изучении диф-фракции рентгеновских лучей. Атомы или ионы в кристалле образуют правильную трехмерную решетку, при прохождении через которую рентгеновские лучи, имеющие длину волны, соизмеримую с межатомными расстояниями, испытывают диффракцию. Узлы решетки действуют как центры рассеяния, служащие источниками волн, которые взаимодействуют друг с другом - интерферируют. Удобным способом интерпретации получающейся картины является представление об отражении рентгеновских волн от плоскостей [c.456]

    Как видно, теоретической базой методов определения средних размеров и форм субмикроскопических частиц в порошках является кинематическая теория интерференции рентгеновских лучей Лауэ — Брэгга, не учитывающая влияния взаимодействия атомов кристалла на процесс рассеяния. Появление теоретически более совершенной динамической теории Дарвина — Эвальда не внесло чего-либо нового в рассматриваемый вопрос, так как наиболее типичные для этой теории эффекты первичной и вторичной экстинкции ничтожно малы для субмикроскопических кристалликов. [c.33]

    Приведены необходимые для применения дифракционных методов сведения по кристаллографии. Рассмотрены теоретические основы и практическое использование дифракции рентгеновских лучей, электронов и нейтронов для изучения структуры кристаллов и металлических материалов. Изложены принципы и применение просвечивающей, дифракционной и растровой электронной микроскопии. Описаны методы локального элементного анализа, основанные на различных видах взаимодействия быстрых электронов с веществом. [c.2]

    Раздел II ВЗАИМОДЕЙСТВИЕ С ВЕЩЕСТВОМ И ТЕОРИЯ РАССЕЯНИЯ КРИСТАЛЛАМИ РЕНТГЕНОВСКИХ ЛУЧЕЙ Глава 5 [c.140]

    Английские ученые из Кембриджа У. Г. Брэгг и его сын У. Л. Брэгг установили соотношение, связывающее расстояние между слоями атомов в кристалле с длиной волны рентгеновских лучей и углом дифракции. Вывод уравнения Брэггов основан на несложном математическом рассмотрении разности длины пути взаимодействующих рентгеновских лучей, рассеиваемых рт различных атомных слоев кристалла. Дело в том, что рентгеновские лучи, которые проникают в кристалл на большую глубину, после рассеяния отстают от [c.174]

    Вопрос об ослаблении интенсивности рентгеновских лучей при прохождении их через вещество, не являясь основным в рентгеноструктурном анализе, имеет тем не менее существенное значение при разре-щении некоторых определенных задач. Поглощение рентгеновских лучей необходимо учитывать при расчете интенсивности дифрагированных кристаллом лучей оно играет ошределенную роль при выборе излучения селективное поглощение используется при фильтрации лучей. Рассеяние рентгеновских лучей лежит в основе самого явления дифракции их при прохождении через кристалл. Тем не менее подробное рассмотрение всех процессов взаимодействия рентгеновских лучей с веществом с позиций современной волновой механики в рамках настоящего курса не представляется необходимым. С другой стороны, ограничиваясь кратким перечислением процессов, приходится мириться с некоторыми существенными неточностями, неизбежными при упрощенном описании явлений. [c.148]

    Сопоставление электронов в металле с обычным газом дает, конечно, весьма приближенную картину. Прежде всего надо принимать во внимание, что каждый движущийся электрон следует сопоставлять с волной длина волны при этом определяется известным соотношением К = к/ти, где к — постоянная Планка ( /г = 6,625 10" эрг сек), т — масса электрона (т = 9,11 г) если величину скорости электрона выразить в см сек то соответствующую длину волны к получим в сантиметрах. Так как электроны имеют определенную длину волны, между ними в трехмернопериодическом расположении, свойственном кристаллу, должно происходить взаимодействие, похожее на взаимодействие рентгеновских лучей с кристаллом. Это ведет к тому, что в кристаллической структуре металла для каждого направления имеется ряд запрещенных значений скорости движения электронов. [c.101]

    Начиная с первого десятилетия нашего века публикуется большое число работ, посвященных исследованию процессов, сопровождающих взаимодействие рентгеновских лучей, электронов и д гих частиц с кристаллами. Полученные результаты изложены во многих монографиях и обзорах. На первый взгляд может создаться впечатление, что указанная область физики приобрела известную законченность. Однако в начале 60-х годов существенно новый шаг был сделан при анализе особенностей взаимодействия быстрых заряженных частиц с кристаллами. В первую очередь здесь следует сказать об открытии эффекта каналирования заряженных частиц в кристаллах и эффекта теней, послуживших основой нового метода определения времени протекания ядерных реакций [1—3]. Выяснилось также, что явление каналирования имеет место и для релятивистских позитронов (электронов), а также протонов, я-ме-зонов большой энергии и других частиц. [c.3]

    Если не удается приготовить подходящий кристалл или волокно, то полезную информацию о структуре макромолекулы все же можно получить, измеряя рентгеновское рассеяние от разбавленного раствора. Картина взаимодействия рентгеновских лучей с объектом описывается с помощью той же геометрии (вц и 8), что использовалась в гл. 13, однако теперь исследуемые молекулы составляют лищь малую долю объекта. Поэтому фактически необходимо измерять лищь долю рассеяния от системы макромолекула — растворитель, которая является добавочной к рассеянию от чистого растворителя. Это приводит к осложнениям, на которых мы остановимся позже, когда будут обсуждаться проблемы контраста при рассеянии нейтронов. [c.421]

    Как известно [6], взаимодействие различных волн с кристаллом всегда приводит к образованию в нем полей, амплитуды которых связаны с периодом его решетки. Почти то же самое имеет место в случае взаимодействия рентгеновских лучей с кристаллом. Если на кристалл 1 (рис. 1) падает первичная рентгеновская волна с амплитудой 01 точно под углом Брэгга 0 к плоскости, след которой представлен отрезком ОР, то, как утверждает динамическая теория дифракции рентгеновских лучей идеальным кристаллод , в нем в простейшем случае (поглощающий кристалл и только одно состояние поляризации образуются только две волны с амплитудами и модулированными по периоду решетки Ну = = где Ну — вектор обратной [c.187]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    Электронографический анализ — один из методов изучения атомно-кристаллн-ческой структуры веществ, в котором используется дифракция потока движущихся электронов, обладающего волновыми свойствами. От рентгеновских лучей волны потока электронов отличаются меньшей длиной. При ускоряющем напряжении 30—100 кВ, которое применяют в электронографах, длина волны потока электронов колеблется в пределах 0,07—0,04 А, что в 20—30 раз меньше длин волн, используемых в рентгенографическом анализе. Кроме того, длина пробега электронного луча в исследуемом веществе по сравнению с рентгеновским меньше и обычно не превышает 100 А, так как электроны сильно взаимодействуют с веществом и быстро оглощаются в кристаллах, [c.105]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    Кристалл представляет собой систему, состоящую их двух взаимодействующих подсистем электронной и ядерной. В рассеянии излучений принимают участие обе подсистемы, однако, интенсивность рассеяния на каждой из них зависит от природы рассеиваемого излучения. Например, интенсивность потенциального рассеяния рентгеновских лучей на ядрах атомов (томпсоновское рассеяние) примерно в 10 раз меньше интенсивности, рассеянной электронными оболочками тех же самых атомов, поэтому в теории дифракции рентгеновских лучей рассеянием на ядрах пренебрегают. Известны некоторые изотопы, ядра которых как раз попадают в область длин волн, используемых в структурном анализе. Сечение взаимодействия таких ядер имеет резонансный характер и по величине может значительно превышать сечение взаимодействия излучения с электронными оболочками атома. [c.174]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Следует выбрать самые интенсивные пики в коротковолновой области сканирования кристалла LiF и найти их длины волн. Используя полный справочник рентгеновских лучей, например [113], определить возможные элементы, которые могут дадать рассматриваемые пики в излучении Kai, 2 или Lai, 2-В параллель, используя данные о серии линий, полученные при качественном анализе с помош,ью спектрометра с дисперсией пО энергии, если какой-либо элемент уже предварительно связан с пиком Kai,2(n= ), исследователь должен сразу же отыскать сопутствующий им пик И снова отнощение интенсивностей Ка и должно равняться приблизительно 10 1. Однако из-за изменений в эффективности кристалла и детектора ожидаемое отношение может выполняться не всегда. Например, в спектре d (рис. 6.12) эффективность детектора с коротковолновой стороны Л"-края поглощения аргона приблизительно 2 раза выше. Следовательно, пик L i, интенсивность которого должна составлять примерно 60% от интенсивности La, на самом деле больше. Удвоение эффективности до /(-края поглощения аргона обусловлено тем, что в проточном пропорциональном детекторе рентгеновского излучения этого спектрометра используется газ Р-10 (90% Аг—10% метана). При заданных размерах детектора и давлении газа Р-10 некоторая часть рентгеновского излучения с длиной волны, большей, чем длина волны края поглощения, проходит через газ, не взаимодействуя с ним. Для рентгеновского излучения с длинами волн короче длины волны края поглощения большая часть (приблизительно в 2 раза) будет взаимодействовать с газом и, следовательно, будет обнаружена. Следует также отметить, что разрешения кристалл-ди-фракцнонного спектрометра с некоторыми кристаллами, например LiF и кварцем, дое-таточно, чтобы продемонстрировать по крайней мере некоторое разделение пика Ка на Kai и Ка.2 с отношением интенсивностей Ка. Ка2=2 . Если подобно этому рассматривать пик La, то следует искать полную L-серию. Необходимо отметить, что кроме тех L-линий, которые указаны на рис. 6.1 (т. е. Lai, 2, Lfiu L 2, L 3, L u Lyz, Li, Lv), благодаря прекрасному разрешению и отношению пик/фон можно обнаружить их больше. При идентификации серии линий возможна ситуация, когда из-за ограничений использования кристаллов по длине волны может быть обнаружен только главный пик (например, Gex с LiF, а Ge/ g лежит за пределами диапазона кристалла). С учетом этого факта в спектре, полученном с по- [c.294]

    Отражение рентгеновских лучей от поверхностей кристалла служит первым примером исключительно важных явлений взаимодействия излучения с веществом. Понятие вещества здесь нужно определить более точно, чтобы не спутать отражение рентгеновских лучей от кристаллов с рассматриваемыми ниже аналогичнылш, но все же иными физическими явлениями тина эффекта Комитона или фотоэлектрического эффекта. Более полное рассмотрение свойств кристаллов приведено в гл. XIП. [c.25]

    Лучи, испускаемые радиоактивными элементами, проникают в свинец на несколько сантиметров космические лучи имеют более короткую длину волны (а возможно, и другую природу) и проникают в землю на сотни метров. Радиоволны, характеризующиеся значительно большими длинами волн, не взаимодействуют с веществом, если оно не обладает проводимостью. Лауэ первый показал, что рентгеновские лучи имеют длину волны такого же порядка величины, как межатомные расстояния в кристаллах, и что эти расстояния MOHIHO вычислить из наблюдаемой интерференционной картины. [c.26]

    Когда пучок рентгеновских лучей попадает на поверхность кристалла, кванты рентгеновского излучения взаимодействуют (поглощаются и испускаются) с и L-электропами атомов. (Здесь предполагается некоторое знакомство с материалом, систематически изложенным в гл. IV и V). Подчеркнем, что интерференция связана не со свойствами внешних электронов, от которых зависят химические свойства изучаемых атомов, а с Z- и -электронами, расположенными во внутренних оболочках атомов. Другими словами, такое облучение не изменяет никаких свойств атомов, которые влияют на их химическое поведение. Некоторые кванты излучения проникнут в глубь кристалла и отразятся электронами атомов, расположенных во внутренних слоях решетки. Поэтому в отраженном луче окажутся волны, различающиеся по фазе, что приведет к интерференции отраженных волн. В этом и состоит отличие отражения рентгеновских лучей от отражения видимого света, происходящего только на внешней поверхности кристалла. Как и в картине, данной Гюйгенсом, каждый атом в кристалле можно принять за новый источник излучения, испускающий свет по всем паправлениям. Поэтому должны существовать паправлепия, по которым интерференции не иро-псходит. [c.26]

    Рентгеновские лучи способны к дифракции (рассешию), а кристаллы служат естественной дифракционной решеткой. Расстояния между плоскостями трехмерной кристаллической решетки (определяющие параметры элементарной ячейки) имеют такой же порядок, как и длина волны рентгеновского излучения, поэтому кристаллическая решетка и ведет себя подобно дифракционной решетке. Если монохроматический пучок рентгеновских лучей направить на кристалл, рентгеновские лучи рассеиваются когерентно, т е. при сохранении во времени постоянства соотношения между фазами волн и, следовательно, длины волны. Это создает возможность интерференции (сложения амплитуд волн) дифрагированного (вторичного) излучения, возникающего при взаимодействии первичного излучения с электронными орбиталями атомов кристаллической решетки. Получаемая дифракционная картина отражает трехмерную периодичности распределения электронных плотностей в кристаллической решетке, характеризующих расположение атомов. [c.145]

    Малость длины дебройлевской волны для электрона означает большой радиус сферы Эвальда (см. стр. 268), ее вырождение в плоскость. Это сильно упрощает истолкование электро-нограмм, так как они оказываются прямыми изображениями плоского сечения обратной решетки кристалла. Атомные факторы для рассеяния электронов также пропорциональны атомному номеру, но по своей абсолютной величине они во много раз больше, чем для рентгеновских лучей. Иными словами, электроны взаимодействуют с веществом значительно сильнее, чем рентгеновские кванты. Поэтому они сильно поглощаются веществом, и для исследования его структуры необходимо пользоваться очень тонкими пленками толщиной порядка 10 —10 см, тогда как размеры кристаллов, изучаемых в рентгенографии, порядка 10 см. Исследование необходимо проводить в высоком вакууме. Это делает невозможным применение электронографии для изучения глобулярных белков в их нативном состоянии — вакуум высушит белок. Тем не менее электронография позволяет получить ценные результаты при исследовании фибриллярных белковых структур, синтетических полимеров и других аморфных тел. Существенное преимущество электронографии состоит в том, что она позволяет локализовать атомы водорода (подробное изложение см. в монографиях [31, 32]). [c.275]

    Качественного представления о структуре ДНК недостаточно яля понимания многих вслектов ее функционирования, в частности механизмов взаимодействия с белками. Для этого необходима информация о деталях структуры и возможностях ее изменения под действием различных факторов В настоящее время накоплен очень большой материал по дифракции рентгеновских лучей нв ориентированных волокнах ДНК и по строению моно- и олигонуклеотидов в кристаллах, позволяющий дать сравнительно точное описание возможных структур ДНК. Известно, что существует большой набор различных конформаций ДНК, которые меняются и переходят друг в друга в зависимости от внешних условий. [c.335]

    Для разложения в спектр рентгеновского излучения пользуются явлением дифракции ка кристаллах. Кристалл при падении на него рентгеновских лучей действует как трехмерная пространственная дисЬракционная решетка. Результат взаимодействия рент- [c.272]


Смотреть страницы где упоминается термин Взаимодействие рентгеновских лучей с кристаллами: [c.101]    [c.127]    [c.43]    [c.317]    [c.38]    [c.21]   
Смотреть главы в:

ЭВМ помогает химии -> Взаимодействие рентгеновских лучей с кристаллами




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте