Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические методы измерения внутренних напряжений

    Экспериментальные методы определения внутренних напряжений в первом приближении можно разделить на механические и физические. Механические методы основаны на измерении деформации образцов в результате проявления усадочных явлений при отверждении полимерных систем или нарушения равновесного напряженного состояния (путем рассечения образцов, рассверловки отверстий и другими способами). Используя законы теории упругости, в частности принцип Сен-Венана, по деформации образцов с учетом их физико-механических показателей можно рассчитать напряжения, вызвавшие изгиб образцов, или напряжения, возникшие до разрушения изделий [62]. [c.42]


    Несколько обособленным направлением, объединившим работы В. А. Каргина по механическим свойствам полимеров и по электрохимии, явилось изучение защиты металлических поверхностей, покрытых полимерными пленками, от коррозии. Проведенное им совместно с 3. Я. Берест-невой и М. И. Карякиной исследование привело к оригинальному результату оказалось, что защитное действие полимерных покрытий обусловлено изменением термодинамических условий образования новой фазы па поверхности металла при замене контакта с воздухом или агрессивной средой на контакт с пленкой полимера. Особое значение поэтому имеет работа отрыва пленки от металла, а не проницаемость пленки. Из этого вытекает, что внутренние напряжения в защитной пленке, возникновение и развитие которых, было специально изучено в процессе формования лаковых покрытий В. А. Каргиным, Т. И. Соголовой и М. И. Карякиной, способствуя отрыву покрытия от металла, снижают защитную способность пленки. Эти исследования привели к раскрытию нескольких механизмов возникновения внутренних напряжений в лакокрасочных покрытиях и к разработке новых методов измерения внутренних напряжений в полимерных покрытиях и новых методов исследования коррозии. [c.12]

    В монографии рассмотрены такие аспекты адгезионной прочности, как температурно-временная зависимость прочности, внутренние напряжения, характер разрушения, а также методы измерения адгезионной прочности. Характеристикой адгезионной прочности может являться не только усилие разрушения клеевых соединений или модельной системы адгезив — субстрат, но и предел прочности слоистых пластиков при изгибе и растяжении, а также предел прочности при растяжении комбинированных полимерных материалов, поскольку механические характеристики подобных систем зависят от адгезии между компонентами.  [c.9]

    К числу механических методов относятся методы, основанные на измерении усилия, необходимого для сохранения исходной формы материала, а также методы оценки напряжений по радиусу кривизны пленки, находящейся на подложке [73]. Они нашли применение для качественной оценки напряжений в процессе сушки пленочных материалов. Для количественной оценки напряжений по изгибу образцов применяется консольный метод [74, 75], ранее разработанный для оценки внутренних напряжений в электролитических покрытиях [62]. Внутренние напряжения в этом случае рассчитывают по изгибу консоли. Для простейшего случая напряжения могут быть рассчитаны по формуле [c.50]


    Механические методы измерения внутренних напряжений [c.233]

    Как указывалось в гл. 2, многие физические свойства очень чувствительны к присутствию примесей, и в стандартных учебниках по анализу рассмотрено много примеров применения неизбирательных методов [1]. Однако не все физические свойства можно привлечь для определения следов элементов (понятие следы относится к уровням концентраций менее 0,01%). Во-первых, точность измерения этих свойств не всегда достаточно высока (например, измерения температур замерзания и кипения, теплоты реакци , вязкости, поверхностного натяжения, упругости, скорости звука). Во-вто-рых, в настоящее время многие измерения еще очень сложны как теоретически, так и экспериментально (диэлектрическая релаксация, циклотронный резонанс, магнитоакустическое поглощение, внутреннее трение и свойств сверхпроводимости). Аналогично измерения оптических эффектов в твердых телах, включая люминесценцию, фотопроводимость и поглощение света, не всегда легко обеспечивают получение надежных данных о содержании примесей. В-третьих, другие свойства (например, восприимчивость или ширина линий спектра ферромагнитного резонанса) чувствительны только к определенным примесям в определенных основах. Не существует неизбирательного аналитического метода определения следов элементов, основанного на измерении магнитных свойств, поскольку структура пробы и присутствие компонентов в больших концентрациях по сравнению со следами играют доминирующую роль. В-четвертых, измерения термоэлектрических и некоторых механических свойств (вязкость, напряжение сдвига) можно использовать для подтверждения присутствия или отсутствия примесей, но их редко применяют как основной аналитический метод и поэтому они здесь не будут рассмотрены. Наконец, хотя многие свойства тела зависят от структуры, здесь не будут рассмотрены примеры обнаружения дефектов в кристаллических решетках (нанример, вакансий и дислокаций), поскольку эта тема слишком обширна. [c.376]

    Методы измерения внутренних напряжений можно разделить на два больших класса физические и механические. Механические методы основаны на измерении деформации образца, вызванной внутренними напряжениями. Деформация образца происходит вследствие нарушения равновесия сил и перехода к новому положению равновесия. По значению деформации образца, пользуясь теорией упругости, можно рассчитать значение внутренних напряжений. Нарушение равновесия и изменение формы тела может происходить самопроизвольно или целенаправленно. Первый случай реализуется в нескольких методах, из которых самым распространенным является метод гибкого катода (консольный). На преднамеренном нарушении равновесия основаны методы Калакутского, Давиденкова, Закса. Так, по изменению расстояния между концами распиленного кольца, отрезанного от тонкостенной трубы, можно рассчитать окружные напряжения. Последовательно снимая наружные слои трубы и измеряя диаметр распиленного кольца, можно рассчитать изменение окружных напряжений по толщине. По прогибу полоски, вырезанной вдоль [c.233]

    Тен ометрические методы измерения внутренних напряжений часто выделяют в самостоятельную группу, но, но существу, эти методы относятся к механическим, поскольку основаны на фиксации относительной деформации (усадки) материала, вызванной действием внутренних напряжений. Датчики, применяемые для измерения деформации, весьма разнообразны. Так, в качестве датчика, фиксирующего усадку в слое электролитического покрытия, [c.235]

    Анализ экспериментальных данных [34в] покаэал, что величина внутренних напряжений в осадках, полученных из хлористого электролита и прошедших период стабилизации, при их измерений рентгеновским методом или при послойном растворении осадка является сопоставимой (рис. 5.16). Излом на кривых (штриховых) (Ь = f (Д ) ориентировочно показан нами на основании анализа материалов и исследований зависимостей механических свойств покрытий от их субмикрорас-трескивания в зависимости от величины блоков мозаики. [c.142]

    Измерение температуры поверхности различных изделий бесконтактным методом, активно развиваемое в неразрушающем контроле, само по себе часто представляет большой интерес при наблюдении за ходом технологического процесса. Например, распределение температур по поверхности нагретого изделия или полуфабриката (листа, проката и др.) определяет значения остаточных напряжений в них после охлаждения и, следовательно, их механические свойства. В частности, по распределению температур по поверхности стеклянного листа в полужидком состоянии можно прогнозировать внутреннее напряжение в готовом охлажденном листе. Другим примером является контроль бумажнополиэтиленовых заготовок для пакетов, когда допустимый диапазон отклонения температуры при изготовлении не превышает 10°С, поскольку при нагреве начинается окисление и продукт приобретает затем запах полиэтилена, а при недогреве бумага и полиэтилен плохо соединяются. [c.211]


    Исследование эксплуатационных свойств изделий из фенопластов и изучение влияния режимов их переработки на свойства этих полимеров, проводимые в НИИПМ , являются продолжением работ довоенного периода Подтверждено влияние режимов переработки на свойства изделий . Установлена однозначная зависимость между электропроводностью и диэлектрическими потерями на стадии отверждения смол и содержанием влаги в материале, градиентом летучих и внутренним напряжением между электропроводностью и электрической прочностью Разработан новый метод и прибор для определения твердости пластмасс по глубине погружения шарика, измеряемой относительно верхнего уровня образца в котором на точность результатов измерения не влияет ни толщина образца (до 3 мм), ни шероховатость его поверхности. Для установления связи между физическими свойствами и строением полимерных соединений, рецептурными изменениями композиции и режимами изготовления материала разработан новый прибор — эластометр, который дает возможность проводить испытания, невыполнимые на существующих машинах Эластометр применен для исследования процесса ноликонденсации метилолполиамидных смол путем измерения структурно-механических показателей пленок. В результате измерений получены необходимые данные для управления процессом изготовления пленки с заданными свойствами. [c.293]

    Чтобы говорить о влиянии собственных напряжений на определенные свойства гальванически обработанных детален, чтобы оценить это влияние на показатели прочности, необходимо знать характер (растяжение или сжатие) собственных напряжений и приблизительную их величину. Трудность, осложняющая эту задачу, заключается в том, что до сих пор отсутствует возможность замера внутренних напряжений гальванически покрытых деталей. Поэтому почти во всех случаях приходится ограничиваться определением собственных напряжений выбранных образцов, хотя гальван чески обработанная деталь и образец подвергаются различным воздействия.м, начиная с обработки поверхности (в результате которой изменяются собственные напряжения) и кончая гальванической обработкой. В литературе приведен ряд методов для количественного определения собственных напряжений. В США имеется в продаже несколько механически действующих приборов, но они служат (за исключением рентгенографических анализов микроструктуры) только для грубых сравнительных измерений, пригодных лишь для проверки. [c.171]

    В более ранних работах соединение стержня с корпусом ячейки осуществлялось с помощью гибких стеклянных мембран.) Неподвижный электрод 1 посредством стерженька 2 соединен с воль-фрамовыл стержнем 2", который можно поворачивать в стеклянной рамке. Этот стержень проходил сквозь боковую часть спая из ковара 4 к запаянному в стекло брусочку магнитного манипулятора. Для предупреждения выскальзывания этого подшипника из его держателей использовался кольцевой молибденовый ограничитель 8. Действием на манипулятор маленького магнита можно устанавливать пластину 1 в двух положениях, 3 ж 3 (фиксируемых ограничителями, торчащими из стеклянной рамки). Электрический контакт между пластиной и внаем, расположенным выше 7, осуществляется с помощью пружины из тонкой никелевой проволоки. В положении 3 пластину 1 можно подвергнуть электронной бомбардировке из бокового отростка 6. (Электронная пушка состоит из спиральной вольфрамовой нити (диаметром 0,3 мм), заключенной в цилиндр из Мо. Нагрев до 2600К достигается за счет эмиссии электронов при 40 мА и 12—15 кВ. На цилиндр необходимо подать напряжение 120—170 В, чтобы распределить поток электронов равномерно по пластине.) Вибрирующий электрод 1 можно очищать с помощью помещенной под ним такой же электронной пушки. Исследуемое вещество напыляется на пластину 1, находящуюся в положении 3, из напыляющего источника 6. Таким же образом из напылителя 6" на отсчетную пластину наносится пленка из золота. Электронные пушки 6 можно повторно использовать для отжига. После тщательного отжига и электронного нагрева удается достигнуть остаточного давления 8-10" мм рт. ст. даже при нагретых пластинках. Вся ячейка с подготовленными к измерениям поверхностями жестко закрепляется в заземленном металлическом ящике, внутренний экран заземляется, затем па выведенную часть 2 с генератора передаточным стержнем подаются механические колебания резонансной частоты (220 Гц) при этом неподвижный электрод снова находится в положении 3. В этих условиях помехи от генератора сведены к минимуму. Сигнал подается на осциллограф через двухкаскадный усилитель со входным сопротивлением 10 Ом. Как и в методе Миньоле, значение КРП получают на последовательно включенном потенциометре, показания которого по величине равны КРП в нулевой точке. В работе [76] описана также до некоторой степени похожая установка с горизонтальным, а не вертикальным перемещением неподвижного электрода, позволяющим напылять пленки. В этой установке прямой колеба-тельЕгый привод не использовался, а частота колебаний была, видимо, низкой. [c.134]


Смотреть страницы где упоминается термин Механические методы измерения внутренних напряжений: [c.236]    [c.340]   
Смотреть главы в:

Основы адгезии полимеров -> Механические методы измерения внутренних напряжений




ПОИСК





Смотрите так же термины и статьи:

Измерение напряжения

Методы измерения внутренних напряжений

Напряжения внутренние



© 2024 chem21.info Реклама на сайте