Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранный электрод, стеклянный

    К числу мембранных электродов относят прежде всего давно известный стеклянный электрод, широко применяющийся для определения активности ионов водорода — измерения pH. В последние годы предложено много других мембранных электродов, посредством которых измеряют активность (концентрацию) различных ионов и проводят потенциометрическое титрование. Известны, например, электроды для определения ионов натрия, калия, кальция, магния, цинка, свинца, лантана, хлора, брома, иода, фтора, нитрата, перхлората. [c.468]


    Стеклянный электрод. Стеклянный электрод относится к мембранным электродам, механизм действия которых все еще не вполне установлен, однако имеется немало состоятельных объяснений причин функционирования стеклянных электродов в качестве водородных электродов. И хотя в данном случае отсутствуют электрохимические реакции окисления и восстановления компонентов, обусловливающие возникновение разности потенциала на поверхности раздела стекло — раствор, зависимость потенциалов стеклянных электродов от pH растворов вполне закономерно описывается уравнением, аналогичным уравнению Нернста. [c.60]

Рис. 12.2. Схема двух электродов, входящих в рН-метр со стеклянным электродом. Стеклянная мембрана изготовлена из специального стекла, через которое могут свободно проникать ионы водорода. Потенциал этого электрода зависит от концентрации ионов водорода в среде, окружающей стеклянную мембрану, Рис. 12.2. Схема <a href="/info/1696521">двух</a> электродов, входящих в рН-метр со <a href="/info/3602">стеклянным электродом</a>. <a href="/info/134108">Стеклянная мембрана</a> изготовлена из <a href="/info/8439">специального стекла</a>, через которое могут свободно <a href="/info/1410409">проникать ионы</a> водорода. Потенциал этого электрода зависит от <a href="/info/14574">концентрации ионов водорода</a> в среде, окружающей стеклянную мембрану,
    Типы ионоселективных электродов. Стеклянный электрод по структуре занимает промежуточное положение между жидкими и твердыми мембранами. Стеклянные электроды были первыми ионоселективными устройствами, над которыми в течение последних тридцати пет ведутся интенсивные исследования с целью создания новых практически ценных сортов стекла в качестве электродного материала. Было разработано большое число разного состава стекол, обладающих водородной функцией, несколько стекол с натриевой функцией, а также селективных к таким ионам, как К, Tit s , Стекла для [c.49]

    В настоящее время кроме ионообменных теорий поведение стеклянных электродов объяснено на основе жидкостно-мембранной концепции, предусматривающей наличие в стекле анионных узлов - вакансий в качестве дискретных лигандов для переноса катионов. В свете этих представлений выведено уравнение мембранного потенциала стеклянного электрода  [c.51]

    Впервые на примере стеклянного электрода была разработана наиболее систематично ионообменная теория мембранных электродов. Эта теория исходит из предположения, что мембранный потенциал возникает в результате установления равновесия ионообменного процесса, протекающего между раствором и мембраной. Если в обмене участвует определенный вид ионов, то потенциал на границе раздела мембрана - раствор является функцией состава раствора и мембраны и выражается в соответствии с теорией Нернста  [c.43]


    Существующие ионоселективные электроды можно разделить иа электроды с твердой мембраной, жидкостной мембраной и стеклянные электроды. [c.236]

    Мембранные электроды. Стеклянный электрод [c.299]

    Полуэлемент со стороны исследуемого раствора ведет себя как электрод, обратимый по отношению к определенным ионам. Его называют мембранным электродом. Предложено много мембран ных электродов, с помощью которых можно селективно определять активности (концентрации) различных ионов в растворах. Например, к мембранным электродам относится стеклянный электрод, широко применяемый для определения активности водородных ионов в растворах, на чем основана рН-метрия. [c.175]

    Ионоселективные электроды - это сенсоры (чувствительные элементы, датчики), потенциал которых линейно зависит от логарифма активности определяемого иона в растворе. Важнейшей частью большинства таких электродов является полупроницаемая мембрана, отделяющая внутреннюю часть электрода (внутренний раствор) от анализируемого и обладающая способностью пропускать преимущественно только ионы одного вида. Исторически первым ионоселективным электродом был стеклянный электрод, разработанный Габером и Клемансевичем в начале XX века. Наряду со стеклянным электродом к датчикам на основе полупроницаемых мембран, обладающим повышенной избирательностью по отношению к ионам определенного типа, относятся и другие ионоселективные электроды. Среди них различают первичные ионоселективные электроды - электроды с жесткой матрицей (стеклянные) и электроды с кристаллическими мембранами электроды с под- [c.173]

    Стеклянный электрод относится к мембранным электродам. На поверхности раздела между тонкой мембраной из стекла специального состава и раствором возникает разность потенциала, величина которой является функцией в растворе (хотя в [c.38]

    По принципу действия стеклянный электрод относится к мембранным электродам. Разность потенциалов, возникающая по две стороны мембраны, выполненной из специ- п о г-ального стекла, является функцией [c.131]

    По принципу работы к стеклянному электроду близки так называемые ион-селективные, или мембранные, электроды. Они предназначены для измерения концентрации ионов в растворе, причем один тип электрода может определять концентрацию только того иона, на который он рассчитан. Как и в стеклянном электроде, в ион-селективном имеется мембрана— пленка, на которой адсорбируются изучаемые ионы, что приводит к возникновению на пленке потенциала. Этот потенциал измеряется сравнением с потенциалом вспомогательного электрода, чаще всего такого же, который используется в работе со стеклянным электродом, т. е. хлоридсеребряным. В комплект к иономеру придаются электроды на ионы К+, МН/+, Mg2+, Са +, Вг и ЫОз , хотя освоен выпуск и многих других типов электродов. [c.211]

    В основе теории стеклянного электрода лежит представление, что стекло — это ионообменник, который м ет вступать в ионообменное взаимодействие с раствором А -f В А -f В. Стекло рассматривается как твердый электролит. Поэтому стеклянный электрод должен подчиняться изложенной выше ионообменной теории мембранных электродов, которая первоначально и была разработана для этого электрода .  [c.532]

    Кинетика мембранных электродов пока мало изучена. К этому есть объективные причины мембранные электроды имеют значительные омические сопротивления например, для стеклянных электродов они достигают 10 —10 Ом. На этом фоне выделить поляризационное сопротивление на границе электрод — раствор чрезвычайно трудно. Однако имеются данные в пользу того, что скорость ионообменных реакций в большинстве случаев большая, она не должна быть лимитирующим фактором при установлении равновесия. [c.548]

    Здесь следует отметить, что для твердых мембран названные требования находятся в противоречии и удовлетворить их трудно, поэтому большинство мембранных электродов имеют ограниченные области обратимости (низкую селективность). Например, ионы Са + и Mg + связываются поверхностными слоями стекла гораздо прочнее, чем однозарядные Ыа+ и К+, но при этом становятся практически неподвижными, и стеклянных электродов с удовлетворительной функцией двузарядных катионов получить не удается. Лишь для ионов Н+ высокая избирательность их поглощения стеклом не сопровождается потерей подвижности, причиной чего могут служить особые механизмы переноса протонов в твердых телах. В силу отмеченного обстоятельства стеклянные электроды с водородной функ- [c.548]

    Действие стеклянного электрода можно объяснить, например, при помощи ионообменной теории, предложенной Б. П. Никольским между поверхностным слоем мембраны и раствором, в который погружается электрод, происходит обмен ионами. Стекло отдает катионы Ма+, получая взамен Н+, в результате устанавливается равновесие, определяемое концентрацией этих ионов в стекле и растворе и коэффициентом их распределения в этих двух фазах. В кислых растворах ионы N3 - в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ыа+ электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислите.1ей и восстановителей, солей и т. п. Стеклянным электродом можно пользоваться в большом интервале значений pH —от —2 до 12. Свойства мембран у [c.66]


    Ниже описаны принципы действия и конструкция стеклянного и некоторых других мембранных электродов. [c.470]

    Жидкий мембранный электрод с кальциевой функцией. Ионы кальция играют большую роль в важных физиологических процессах живых организмов. Проблема измерения активности зтих ионов в биологических жидкостях была решена после разработки ионселективного жидкого мембранного электрода с кальциевой функцией. Устройство одного из таких электродов показано на рис. 24.5. Нижний конец открытой стеклянной трубки затянут целлюлозной пленкой, проницаемой для всех ионов и служащей для удержания жидкой мембраны. Последняя представляет [c.475]

    Измерения проводились на мембранных электродах, изготовляемых следующим образом. Из образца карбонатной породы изготавливали шлиф и под микроскопом выбирали участок шлифа без пор и трещин. Выбранную часть шлифа приклеивали к торцу стеклянной трубки. Внутрь трубки наливали насыщенный раствор хлористого кальция и помещали поляризующий платиновый электрод. Изготовленный таким образом электрод погружали в исследуемый раствор. Поляризацию электрода производили по- [c.36]

    По принципу действия стеклянный электрод относится к мембранным электродам типа [c.183]

    Примером использования субстрат-специфичного мембранного электрода является определение мочевины с помощью чувствительного к ионам аммония стеклянного электрода в качестве ИСЭ. Ферментативная реакция основана на гидролизе мочевины в присутствии фермента уреазы  [c.499]

    Какой из указанных электродов относится к типу мембранных электродов а) водородный б) стеклянный в) серебряный г) каломельный  [c.244]

Рис. 34. Селективные ион-электроды — стеклянный (а) и мембранный (в) с общим электродом сравнения (б) Рис. 34. Селективные ион-электроды — стеклянный (а) и мембранный (в) с <a href="/info/695057">общим электродом</a> сравнения (б)
    Первый ферментный электрод, чувствительный к глюкозе, был разработан Кларком в 1962 г, который поместил между мембранами электрода глюкозоксидазу. Образующийся в результате реакции пероксид водорода определяли амперометрически. Этот тип электрода более подробно будет рассмотрен ниже. Позднее Гилболт предложил электрод потенциометрического типа для определения мочевины, реакция разложения которой до иона аммония катализируется уреазой, иммобилизованной в объеме полимера на поверхности стеклянного электрода, чувствительного к однозарядным ионам. [c.214]

    При определении pNa и рК в качестве измерительного электрода используют стеклянные электроды ЭСЛ-51г-04 или ЭСЛ-51г-05 (иногда мембранный электрод ЗМ-К-01) в качестве вспомогательного — хлорсеребряный электрод. [c.405]

    Для потенциометрических измерений применяют мембранные индикаторные электроды. Они обладают высокой чувствительностью и селективностью к катионам и анионам. По материалу мембраны их можно разделить на четыре группы стеклянные электроды электроды с жидкими мембранами электроды с твердыми или осадочными мембранами электроды с газочувствительными мембранами. [c.106]

    Большие преимущества стеклянного электрода как средства удобного и быстрого определения протонной активности послужили стимулом для разработки других мембранных -электродов, проявляющих селективную чувствительность к присутствующим в среде катионам или анионам. Подобные электроды называются ионоселективными. [c.342]

    Разность потенциалов менялась от 300 до 400 в при силе тока 150 ма вначале до 1600—1800 в при силе тока 12—15 ма в" конце электро-диализа. Так как при подобном режиме происходило сильное нагревание электродиализатора, мы вводили между мембранами и электродами стеклянную спираль (3 витка), в которой протекала холодная вода. Введение охлаждающей спирали в среднюю камеру необязательно, так как уже при двух спиралях температура электродиализатора лишь на несколько градусов превышает комнатную. [c.54]

    Стеклянный мембранный электрод. Среди электродов, чувствительных к ионам водорода, стеклянный мембранный электрод или просто стеклянный электрод является уникальным, так как механизм его отклика на присутствие иона водорода иной он обусловлен ионообменным процессом, а не реакцией переноса электронов. Вследствие этого стеклянный электрод не подвержен влиянию окислителей и восстановителей в растворе пробы. Кроме того, быстрота и правильность, с которыми стеклянный электрод реагирует на внезапные изменения активности, делает его универсальным индикаторным электродом для потенциометрических кислотно-основных титрований как в водной, так и неводной средах. [c.372]

    В зависимости от цели применяют стеклянные электроды различных размеров и формы. Их используют для определения pH крови и других биологических жидкостей, для непрерывного измерения и записи на ленту самописца активности иона водорода в потоке растворов или для оценки pH в одной капле раствора или меньшем объеме. Наиболее часто применяемая форма стеклянного мембранного электрода изображена на рис. 11-3. Он представляет собой тонкостенный шарик, изготовленный из специального стекла, высокочувствительного к активности ионов водорода в растворе, припаянный к концу обычной стеклянной трубки. Внутри стеклянного шарика находится разбавленный водный раствор хлористоводородной кислоты, обычно 0,1 Р. В раствор хлористоводородной кислоты опущена часть серебряной проволоки, покрытая хлоридом серебра, остальная часть проволоки проходит через трубку, заполненную смолой, и создает электрический контакт с внешней цепью. Таким образом, стеклянный электрод включает в себя внутренний хлорсеребряный электрод сравнения, погруженный в разбавленный раствор хлористоводородной кислоты, заключенный внутри чувствительного к pH стеклянного шарика. Иногда используются другие внутренние электроды сравнения, включая каломельный электрод. [c.372]

    Ряс. М-3. Стеклянный мембранный электрод  [c.372]

Рис. 11-4. Схема разреза гидратированного стеклянного мембранного электрода. Рис. 11-4. Схема разреза гидратированного стеклянного мембранного электрода.
    Стеклянный электрод. По принципу работы стеклянный электрод относится к так называемым ион-селективным (мембранным) электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов, т. е. в электродных реакциях электроны участия не принимают. Ионсе-лективные электроды могут быть обратимы как по катиону, так и по аниону в зависимости от свойств используемой мембраны. [c.253]

    Краткая историческая справка. Первым представителем мембранных электродов следует считать стеклянный электрод, открытый и изученный как Н -селективный электрод в начале нашего столетия. В дальнейшем была исследована обратимость различных стеклянных мембран к другим катионам ( N L, К Са и др.). Так, в 1934 г. предложен КО селективный стеклянный электрод в 1935-193 7 гг. исследования в этом направлении ведут в США И. Кольтгоф, а в Советском Союзе Б.П. Никольский, В.А. Каргин и др. В 1961 г. появляется первое упоминание об осадочных мембранных электродах (Венгрия, Е. Пунгор). Промышленное изготовление (в том числе Г -селектиБНого электрода) начинается с 1966 г. Первые работы по жидким мембранам относятся к 1967-1970 гг. В настоящее время как в СССР, так и эа рубежом в различных научно-исследовательских центрах ведутся систематические работы по изучению электродных свойств разнообразных мембран. [c.39]

    Основная электродная функция выражает обрагимость мембранного электрода относительно основных потенциалопределяющих ионов. В зависимости от ряда факторов эта функция сохраняется в некотором диапазоне концентраций определяемого компонента. Графически Е = 1 (1па,) представляет собой прямую линию с угловым коэффициентом наклона, равным во многих случаях теоретическому значению RT ZiF (или при переходе к десятичным логарифмам 1п 10 ЯТ111р). К таким мембранам относятся стеклянные (функционирующие как pH-, так и рМа-электроды), кальциевые, фторидные и некоторые другие. Встречаются электроды с так называемой неполной функцией , зависимость потенциала которых от 1па, также линейна, но угловой коэффициент этой зависимости ниже нернстовского значения. [c.107]

    В настояцес время мембранные электроды делятся на три типа стеклянная мембрана, твердая мембрана(гомогенная или. етерогенная ). жидкая мембрана, которая может содержать либо заряженные, либо ней-традьнне лигандчые группы. [c.6]

    В кислых растворах ионы Na+ в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ма+, электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислителей и восстановителей, солей и т. п. Однако в сильнощелочных и кислых растворах стеклянным электродом пользоваться нельзя, так как нарушается линейная зависимость между pH раствора и величиной потенциала. Свойства мембран у разных, даже однотипных, стеклянных электродов неодн- [c.69]

    Для мембранных электродов помехи связаны с газами, которые реагируют со внутренним раствором подобно определяемым газам. Это наблюдается, например, при определении N02 в присутствии СО2 или 802- В таких слу-чалх стеклянный рН-электрод заменяют на ион-селективный электрод. Для определения N02 можно использовать ИСЭ на нитрат, как можно понять из уравнения реакции в табл. 7.7-3. Эта таблица дает некоторые дополнительные примеры использования ИСЭ в качестве детектирующих. Недостатками этого вида сенсоров являются большое время отклика и низкая чувствительность. [c.499]

    Принятые обозначения. ХС — халькогенидные стеклянные химические сенсоры ГЭТМ — гомогенные электроды с твердыми мембранами ЖМЭ — жидкостной мембранный электрод [c.826]

    Однако здесь же следует отметить, что в случае ионообменных электродов часто можно создать условия, при которых устанавливаются стационарные потоки ионов и растворителя сквозь ионитовуго мембрану. В мембранах же стеклянных электродов, по-видимому, не достигаются стационарные состояния. Пока трудно представить с достаточной определенностью строение переходного слоя между неизменными слоями стекла и раствором, хотя некоторые полезные сведения можно найти в работах [13—15], а также в главе X. [c.306]

    Биология и медицина. Начало биологическим применениям стеклянных электродов с металлической функцией ( катион-чувствительных ) положили работы Эйзенмана с сотрудниками (1957 г.). Результаты работы, проведенной под руководством Эйзенмана, дали возможность биологам получать данные об активности ионов калия и натрия непосредственно с места их действия (in situ) в биологических процессах. В этих работах подчеркивается и другая сторона вопроса для ряда биологических явлений (возникновение биопотенциалов, клеточная проницаемость и связанные с ней процессы нервного возбуждения, кажущаяся специфичность многих клеток и тканей по отношению к ионам К ) физико-химические закономерности оказываются во многом сходными с теми, которые имеют важное значение в функционировании стеклянных и мембранных электродов. Это повышает интерес и значимость самой ионообменной теории стеклянного электрода. [c.331]

    Наиболее удовлетворительные значения э. д. с. гальванического элемента получают в результате измерений с по1МОЩью потенциометра, который обсуждался в гл. 9. Воспроизводимость любого потенциометрического измерения зависит в основном от чувствительности, с которой известную переменную э. д. с. можно компенсировать э. д. с. гальванического элемента. Эта чувствительность зависит от прибора, применяемого для обнаружения очень слабых токов, которые текую через цепь, когда две противоположно направленные э. д. с. недостаточно компенсированы. На рис. 9-3 и 9-4 изображено использование гальванометра в качестве такого прибора. Применение подобного гальванометра допустимо для этой цели прн условии, что внутреннее сопротивление гальванического элемента и сопротивление узлов всей электрической цепи не превышает всего 1 МОм. Однако для измерений pH, где сопротивление стеклянного мембранного электрода может достичь 100 Мом или более, следует заменить гальванометр усилителем с большим входным импедансом. Дополнительная информация о рН-метрах будет приведена ниже в этой главе. [c.366]


Смотреть страницы где упоминается термин Мембранный электрод, стеклянный: [c.181]    [c.40]    [c.401]    [c.121]    [c.266]   
Мембранные электроды (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Электрод мембранный

Электрод стеклянный



© 2024 chem21.info Реклама на сайте