Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в электрохимических системах

    В элементах третьей группы работа ХИТ осуществляется благодаря подаче компонентов электрохимической реакции к электродам. Такие элементы могут работать без перерыва длительное время, лимитируемое потерей каталитических свойств элект )одов. Обычно на один из электродов (отрицательный) подается топливо, на другой (положительный)—окислитель, и в элементе происходит холодное электрохимическое сжигание топлива в виде двух расчлененных реакций иа одном электроде окисляе ся топливо, на другом — восстанавливается окислитель. Такие электрохимические системы называются топливными элементами. [c.208]


    Применение уравнений Гиббса — Гельмгольца к электрохимическим системам позволяет найти соотношение между электрической энергией пРЕ и тепловым эффектом токообразующей реакции. Подстановка в уравнения (21) и (22) вместо величин и АО эквивалентных им величин электрической энергии из (52) и (53) дает [c.20]

    Уравнение общей реакции электрохимической системы [c.323]

    Согласно определению, данному электрохимическим системам, в них происходит взаимное превращение энергии химических реакций и электрической энергии. Пусть з электрохимической системе обратимо и изотермически совершается химическое превращение VA А + Vв В +. .. = -Ь + УМ +. .. (47) [c.19]

    Принцип работы и токообразующая реакция. Электрохимическая система ЭА может быть записана в виде [c.226]

    Сумма общих электродных реакций для двух электродов данной электрохимической системы дает общую реакцию электрохимической системы. В нее не входят электроны, поскольку в каждой из двух электродных реакций участвует одно и тоже число электронов, но на одном электроде они воспринимаются частицами (г = г), а на другом — теряются = —г). [c.296]

    Информационные возможности интерпретации результатов измерений сопротивления переменному току связаны с тем, что теория электрических цепей переменного тока [109-111] опирается на положение, что через ХИТ ток протекает как фарадеевский за счет электрохимических реакций и как ток заряжения двойного электрического слоя. И протекание окислительно-восстановительной реакции электрохимической системы отражается эквивалентной схемой вида, показанного на рис. 8.4. [c.217]

    Если из нескольких возможных электродных процессов желателен только один, то необходимо, чтобы его выход по току был как можно выше. Имеются системы, в которых весь ток расходуется лишь на одну электрохимическую реакцию. Такие электрохимические системы используются для измерения количества прошедшего электричества и называются килонометрами или кулометрами. Известны три основных типа кулонометров весовые, объемные и титрационные. В весовых кулонометрах (к ним относятся серебряные и медные) количество прошедшего электричества рассчитывается по изменению массы катода. В объемных кулонометрах расчет производится на основании измерения объема получающихся веществ (газа в водородном кулонометре, жидкой ртути в ртутном кулонометре). В титрационных кулонометрах количество электричества определяется по данным титрования веществ, появившихся в растворе в результате электродной реакции. В этом случае чаще всего используют анодное растворение серебра (кулонометр В. А. Кистяковского) или электролитическое окисление ионов иода. [c.282]


    Электрохимическая система, в которой за счет внешней электрической энергии совершаются химические превращения, называется электролизером или электролитической ванной (рис. 2, в). Электрод, принимающий электроны от участников реакции, называется анодом. Электрод, отдающий электроны участникам реакции,— катодом. Часть электролита, примыкающая к аноду, называется анолитом] примыкающая к катоду — католитом. [c.13]

    Одна из основных особенностей электрохимической системы заключается в пространственном разделении участников протекающей в ней реакции. Поэтому общая токообразующая реакция распадается здесь па две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим э.д.с. электрохимической системы, как отра.жение изменения ее химической энергии в ходе суммарной реакции, также должна представлять собой сумму двух электродных потенциалов. Каждый из иих отвечает изменению химической энергии при протекании частной электродной реакции. Таким образом, [c.156]

    В электрохимических системах происходит взаимное превращение энергии химических реакций в электрическую энергию и обратно. Применение законов термодинамики к электрохимическим системам позволяет рассчитать значения равновесных электродных потенциалов и э. д. с. электрохимических цепей. Для обратимой реакции [c.476]

    Если в электрохимической системе обратимо и изотермически протекает реакция [c.154]

    Уравнения (7.4) и (7.6) неопределенны в том смысле, что не всегда можно достаточно четко установить, какие именно из участников реакции следует принимать за исходные вещества, а какие — за ее продукты. Поэтому, ссли не ввести дополнительных условий, то для одной и той же электрохимической системы, в зависимости от порядка написания уравнения реакции, значения [c.156]

    Практическое исиользование электрохимических систем (как химических источников тока или как электролитических ванн) всегда связано с электрохимическими реакциями, протекающими с конечной скоростью в одном наиравлении. Естественные электрохимические процессы, например разрушение металлов под действием окружающей среды, также направленны и совершаются с заметной скоростью. Поэтому как в первом, так и во втором случаях электрохимические системы уже пе находятся в состоянии равновесия и их свойства значительно отличаются от свойств соответствующих равновесных систем. [c.276]

    Уравнение реакции, протекающей в такой электрохимической системе, должно быть записано как [c.448]

    Переход энергии химической реакции в энергию электрического тока и обратно происходит в электрохимических системах, состоящих из электролитов и электродов. Электрод — система, состоящая из двух фаз, одна из которых является электролитом, а др5 гая — металлом или полупроводником. Между, компонентами фаз происходит реакция (электродный процесс), сопровождающаяся переходом электрических зарядов из одной фазы в другую и возникновением скачка потенциала на границе их раздела. [c.454]

    Термодинамически неустойчивы электрохимические системы Ох, Red, потенциалы которых более отрицательны, чем потенциал кислородного электрода они вступают в реакцию, при которой поглощается кислород, а в растворе образуются ионы 0Н — разложения воды не происходит  [c.493]

    Электрохимические системы Ох, Red, потенциалы которых более положительны, чем потенциал кислородного электрода, термодинамически неустойчивы и вступают в реакцию, при которой ионы ОН" взаимодействуют с Ох, образуется кислород, т. е. вода разлагается  [c.493]

    Электрохимическая реакция такой системы может быть выражена следующим уравнением  [c.32]

    Электрохимическая система и предполагаемые токообразующие реакции. [c.69]

    Если в электрохимической системе электродные реакции протекают преимущественно в определенном направлении (окисление — на одном, а восстановление— на другом электроде), то система является неравновесной. В этом случае скорости процесса (анодного — 1 , катодного — ц) не равны между собой и отличаются от тока обмена  [c.126]

    Если прн обратимом протекании реакции (47) в стехиометрических соотношениях переносится пР электричества (/ = 96 500 Кл, или / = Л ли о, где Мл — постоянная Аногадро, а во — элементарный заряд) и напряжение на равновесной электрохимической системе, Г1ЛИ ее электродвижущая сила (э.д.с.), составляет некоторую величину Е, то электрическая работа (энергия) будет равна произведению пР (параметр экстенсивности) на Е (параметр интенсивности), т. е. [c.19]

    Из уравнений (56) и (57) следует, что соотношение между электрической энергией, обратимо генерируемой или поглощаемой в электрохимической системе, и тепловым эффектом протекающей в ней реакции зависит от знака и вел1 чины температурного коэф- [c.20]

    Приложение законов термодинамики к электрохимическим системам позволяет установить количественную связь между электрической энергией электрохимических систем и изменением химической эпергип протекающих в них токообразующих химических реакций. Правильно определяя химическую энергию токообразующих реакций как источник электрической энергии электрохимических систем, термодинамика, являясь наукой о наиболее общих закономерностях, не в состоянии показать, какими путями, по какому механизму химическая энергия превращается в электрическую, из чего слагается э.д.с., что собой представляет потенциал электрода. [c.23]


    Это значение э.д.с., отвечающее константе равновесия электро--химичсско]] реакции и обозначаемое как Ео, называется стандартной э.д.с. электрохимической системы. [c.155]

    Вместе с тем в химической теории предполагается, что э. д. с. электрохимической системы слагается только из двух скачков потенциала, возникающих на тех границах раздела, где протекают тоготобразующие химические реакции, т. е. на границах раздела электрод — электролит. При этом электродные потенциалы отождествляются со скачками потенциалов между электродом и раствором, а э. д. с. — с разностью этих скачков  [c.212]

    Такая чисто ионная концепция приводила, однако, к невозможности истолкования )яда проблем, связанных с возникпове ием э. д. с. в электрохимических системах н с поведением металлов, находящихся в контакте с растворами, содержащими их ионы. Так, в частности, встречаются трудности при выяснении проблемы, где и как в обратимой электрохимической системе генерируется электрическая энергия (проблема Вольты), ошечающая максимальной работе токообразующей реакции. Действительно, общее уравнение для э. д. с. [c.227]

    Поскольку реакция в электрохимической системе слагается из электродных реакций, поведение каждого из электродов в необратимых услог5Иях должно отличаться от их поведения в условиях равновесия. Равновесное состояние электрода можно охарактеризовать следующими признаками. [c.276]

    Так как частные токи /л и /к одинаковы, то в условиях установившегося равновесия заряд металл.з по отношению к раствору, а следовательно, и потенциал электрода ие являются функцией времени они определяются лишь составом системы, ее температурой и давлением. Потенциал электрода в этих условиях называется обратимым или равновесным электродным потенциалом. Величину равновесного электродного потенциала (в условной шкале) можно вычислить при помощи общих термодинамических уравнений, если только известны электродная реакция, активности участвуюш,их в ней веществ, температура и давление. Э.д.с. равновесной электрохимической системы определяется при этом изме-иенпем термодинамического потенциала протекающей в ней реакции. [c.277]

    Как уже отмечалось (см. гл. 16), электродные процессы часто связаны с фазовыми превращенпями. В результате появления или исчезновения фаз резко меняются многие важные физико-химические свойства электрохимической системы — электродные потенциалы, электрическое сопротивлсзние и т. д. Эти изменения свойств в ходе фазовых превращений используются в интеграторах, элементах памяти — мемистерах и других хемотронах. Принцип действия интегратора дискретного действия, основанного на электродных фазоЕ.ых превращениях, состоит в том, что металл, предварительно осажденный на одном из электродов, переносят на другой электрод. Реакция в хемотроне сводится к перемещению металла М с электрода I на электрод И  [c.385]

    Электрохимические системы рассматриваются в равновесном и неравн весном состояниях. Основным условием перехода системы из равновесного состояния в неравновесное является пр текание через нее электрического тока. В электрохимии изучаются теория электролитов, прохождение через них электрического тока, а также условия равновесия на границах раздела фаз, строение этих границ, кинетические закономерности электродных реакций. [c.454]

    Различают две основные группы проводников электрического тока проводники первого рода, электрическая проводимость которых обусловлена электронами, и проводники второго рода, обладающие ионной проводимостью. В особую группу входят полупроводники, прохождение тока через которые обеспечивают, с одной стороны, возбужденные электроны, а с другой — так называемые дырки — вакантные места на энергетических уровнях, которые покинуты возбужденными электронами. Главную роль в электрохимии играют ионные проводники — растворы и расплавы электролитов, некоторые вещества в твердом состоянии, ионизированные газы. При протекании постоянного электрического тока через электрохимические системы на электродах возникакуг электрохимические реакции, которые подчиняются двум законам Фарадея  [c.455]

    Из уравнения (175.10) видно, что электрическая работа цепи в общем случае не соответствует тепловому эффекту реакции. Если Е/кт < О, то электрическая работа меньше энергии химического процесса, электрохимическая система отдает теплоту в окружающую среду или нагревается в условиях тепловой изоляции. Примером такой системы служит цепь РЬ, Pb l2l Г Ag l, Ag, для которой <1Е/(1Т=—1,86 10 В/К. При ёЕШТ > О электрическая работа системы больше энергии химической реакции недостаток энергии [c.477]

    Химические цепи имеют большое практическое значение. Разнообразные химические истечники тока — первичные (гальванические элементы) и вторичные (аккумуляторы) — представляют собой химические цепи. Рассмотренная водородно-кислородная, цепь является одним из видов так называемых топливных элементов. Такие элементы представляют собой электрохимические системы, в которых протекает реакция окисления топлива или продуктов его переработки (водорода, оксида углерода, водяного газа и др.). Элементы характеризуются высоким коэффициентом использования топлива (70—80%) по сравнению с 30—40% теплосиловых установок, производящих электроэнергию. Несмотря на то что при создании топ  [c.488]

    Если вещества, образующие две электрохимические системы (Oxi, Redl и Охз, Reda), находятся в контакте, например в растворе, то между ними возникает химическая реакция [c.492]

    Рассматриваемая возможность взаимодействия между двумя окис-лительно-восстановительными системами, находящимися в контакте, предполагает, что среда не содержит веществ, способных вступать в реакции с этими системами. Однако в водной среде имеются ионы Н+, ОН , молекулы НаО и растворенный в ней кислород воздуха, которые могут вступать в реакции с системой Ох, Red. Данные вещества образуют электрохимические системы 1) Н+, Нг, которой соответствует обратимая реакция 2Н+ + 2е Нг (реакция на водородном электроде) фн+,н, = 0 2) 0Н , НгО, Ог, которой соответствует обратимая реакция Ог + 2НгО + 4е 40Н (реакция на кислородном электроде) фон,-о, = 0,4 В. [c.493]

    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох + ге" Нес , существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + 26 Нес или анодном Нес1-> Ох + ге направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Предлагается электрохимическая система, для которой допускается несколько вероятных токообразуюш.их реакций. Одна иэ них является реальной. При протекании реальной реакции э. д. с. системы известна. Пользуясь термохимическими данными (величины изменения энтальпии АН и энтропии АЗ) для каждого иэ участников предполагаемых [c.68]

    В электрохимической системе 2п1НаОН1СиО, Си возможно протекание следующих токообразующих реакций  [c.70]


Смотреть страницы где упоминается термин Реакции в электрохимических системах: [c.306]    [c.158]    [c.277]    [c.288]    [c.288]    [c.493]    [c.516]    [c.519]    [c.61]   
Смотреть главы в:

Капиллярная химия -> Реакции в электрохимических системах




ПОИСК





Смотрите так же термины и статьи:

Реакции система для

Электрохимические реакции



© 2024 chem21.info Реклама на сайте