Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование фуранового кольца

    Образование фуранового кольца [c.337]

    Образование фурфурола и его производных. При длительном нагревании с соляной кислотой моносахариды, подобно Y-гликолям, способны образовывать кольчатые простые эфиры. Реакции эти протекают с выделением воды и с образованием фуранового кольца. Карбонильная группа моносахаридов в данной реакции не участвует и в неизмененном виде сохраняется в образовавшемся производном фурана. [c.305]


    Например, дипольные моменты таких распространенных в промышленной практике растворителей, как фурфурол и фенол, составляют соответственно 3,57 и 1,70 Д, в то время как по растворяющей способности фурфурол значительно уступает фенолу. Это объясняется тем, что растворяющая способность растворителей зависит также от структуры углеводородного радикала их молекул, которым определяются дисперсионные силы растворителя. Так, с увеличением длины углеводородного радикала в молекулах кетонов растворяющая способность возрастает, хотя дипольный момент даже снижается. Растворители, в молекулах которых при одной и той же функциональной группе содержатся углеводородные радикалы различной химической природы, отличаются друг от друга по растворяющей способности. Углеводородные радикалы по способности повышать растворяющую способность таких растворителей можно расположить в следующий ряд алифатический радикал >бензольное кольцо >тиофеновое кольцо >фурановое кольцо. Растворяющая способность растворителей второй группы снижается с увеличением числа функциональных групп в их молекуле, особенно если эта функциональная группа способна к образованию водородной связи. [c.75]

    С последующим повышением температуры разрываются метиленовые мостики, образуется метан и при 300-400 С раскрываются фурановые кольца. Этот механизм реакций подтверж дается выделением оксидов углерода и воды (рис. 8-8). Выше 400 С спонтанно из фурановых колец начинается образование ароматических систем. [c.481]

    Образование фуранового кольца нроисходит также при де1 ствии безводного хлористого цинка па феноксиацетальдегид, и в частности, па его гидрат 11 среде уксусной кр1СЛоты пpvI нагревании [822, 823]. Образующийся кумарон под действием хлористого цинка в больше своей части по.лимери- п отся [823]. [c.194]

    Избирательность растворителя изменяется при введении в молекулу второй функциональной группы, причем, если эта группа образует водородную связь, то избирательность снижается. Если вторая функциональная группа не способна к образованию водородной связи, то снижается изби,рательная способность только тех растворителей, у которых она была очень высокой. На избирательность растворителя влияет также структура радикала при одинаковой функциональной группе, причем избирательность снижается в такой. последовательности тиофеновое кольио>бензоль-ное кольцо>фурановое кольцо>алифатический радикал. При введении алкильного радикала в молекулу полярного растворителя его избирательность может как повышаться, так и понижаться, в зависимости от того, что будет превалировать — рост дисперсионного взаимодействия, снижающего избирательность, или уменьшение теплового движения молекул. Поэтому растворитель обладает высокой избирательностью только при определенном соотношении углеводородного радикала и функциональной группы, которые обусловливают его дисперсионные и полярные свойства. Нарушение этого соотношения приводит к снижению избирательности растворителя. [c.58]


    Механизм образования пирролидино[1,2-й]пиразолов 41 включает, по мнению авторов [35], азометино-иминный интермедиат 43, который путем раскрытия фуранового кольца трансформируется в цвиттер-ион 44, один из путей циклизации которого (5-экзо-триг-процесс, согласно правилу Болдуина) изображен на схеме 19. [c.382]

    Группа С2Н2О2 может присоединяться к протоннзованному атому кислорода с размыканием фуранового кольца и образованием структуры следующего типа  [c.67]

    Электрофильное замещение бензофурана протекает в мягких условиях атака направляется в положение 2. Галогены реагируют ио механизму присоединения — отщепления и дают 2- и 3-заме-щенные бензофураны [218]. Окисляющие агенты вызывают расщепление фуранового кольца с образованием производных салицилового альдегида и салициловой кислоты. Нагревание ртутного соединения (238) в присутствии тетрациклона приводит к дибензофурану (240), образующемуся через бензофурин (239) (схема 91) [219]. Изучена реакция дихлоркарбена с дибензофураном [220]. Фталими-донитрен, генерируемый окислением Л/ -аминофталимида (241) тетраацетатом свинца при О °С в присутствии бензофурана, дает нестабильный аддукт (242), который при нагревании изомеризуется в (244), вероятно, через хинонметид (243) (схема 92) [221]. [c.169]

    Восстановление бензофуранов литием в жидком аммиаке приводит к расщеплению фуранового кольца. Когда реакция проводится в присутствии источника протонов (этанол), фурановый цикл восстанавливается [222]. Дибензофуран восстанавливается натрием в жидком аммиаке до 1,4-дигидродибензофурана [223]. При действии щелочных металлов в эфирных растворителях происходит расщепление фуранового кольца с промежуточным образованием анион-радикала. Карбоксилирование интермедиата, образующегося при обработке дибензофурана литием, дает 3,4-бензокумарин [224]. [c.170]

    L-аскорбиновой кислоты участвует в образовании у-лактонного кольца. Эта же реакция указывает и место двойной связи в фурановом кольце как Л - - -бутенолида. [c.29]

    Фармакотерапевтическое действие и применение. Фурокумарины амми большой стимулируют образование пигмента кожи меланина. Фо-то-сенсибилизирующая активность линейных фурокумаринов связана с наличием фуранового кольца в молекуле и соответствуюших заместителей. [c.100]

    Родственные процессы приводят к получению ациклических А -ненасыщен-ных 1,4-дионов в виде Е- и Z-форм при использовании таких реагентов, как бром в водном ацетоне, л<-хлорпербензойная кислота или гипохлорит натрия пример представлен ниже [30]. Даже бут-2-ен-1,4-диальдегид (малеиновый альдегид) можно получить при окислении диметилдиоксираном [38], а комплекс мочевины с пероксидом водорода в присутствии катализатора — метилтриокси-да рения(У11) — окисляет фурановое кольцо с образованием ис-ендионов [39], как показано ниже  [c.384]

    Для определения аминосахаров обычно применяются колориметрические методы, предложенные Морганом и Эльсоном. Существуют два таких метода метод Моргана — Эльсона известный также под названием непрямого метоДа Эрлиха, и метод Эльсона—Моргана . Метод Моргана — Эльсона пригоден для определения микроколичеств N-ацетиль-ных производных аминосахаров (20—50 мкг). Он состоит в непродолжительном нагревании N-ацетилгексозамина с раствором соды при pH 10,8 с последующей обработкой солянокислым раствором /г-диметиламинобенз-альдегида (реактив Эрлиха), что приводит к образованию хромогена, содержащего фурановое кольцо (см. стр. 274), и к возникновению интенсивной красной окраски. Оптическую плотность окрашенного раствора определяют при 550 ммк. Присутствие в анализируемом субстрате лизина и обычных моносахаридов искажает результаты анализа, так как возникающие хромогены дают с реактивом Эрлиха окрашивание с максимальной оптической плотностью при 560 ммк Все гексозамины D-ряда образуют, по-видимому, один й тот же хромоген, поскольку при этом разрушаются все асимметрические центры, кроме С5. Однако интенсивность окраски в случае М-ацетил-О-галактозамина в четыре раза слабее интенсивности окраски М-ацетил-О-глюкозамина [c.280]

    При восстановлении фуранокумаринов амальгамой натрия образуется дигидрокоричные кислоты типа IV, тогда как каталитическое гидрирование в присутствии платины или палладия приводит к быстрому насыщению связи 4, 5 фуранового кольца, после которого проходит медленное восстановление а-пиронового кольца с образованием 3,4,4, 5 -тетрагидрофуранокумари-нов (тип V). Раскрытие лактонного кольца при растворении в 5%-ном едком кали сопровождается образованием о-оксикоричной кислоты, которая легко гидрируется над палладием свободные о-оксидигидрокоричные кислоты (тип IV), полученные любым методом, могут быть превращены в соответствующие 3,4-дигидрокумарины возгонкой в вакууме или нагреванием выше температуры плавления. Дигидро- и тетрагидрофуранокумарины легко дегидрируются в фуранокумарины при нагревании с палладиевой чернью [271. [c.14]

    Образование фурандикарбоновой-2,3 кислоты [49, 501 при окислении перекисью водорода указывает на наличие в молекуле (L) незамещенного фуранового кольца. О строении эфирной боковой цепи свидетельствует образование ацетона при окислении хромовым ангидридом и присоединение кислорода к двойной связи при действии надбензойной кислоты с образованием эпоксисоединения, идентичного оксипеуцеданину (стр. 24). Гидрирование дает гек-сагидроизоимператорин, при окислении которого азотной кислотой образуется янтарная кийлота из а-пиронового кольца и v-метил-н-валериановая кислота из боковой цепи. При действии смеси уксусной и серной кислот получается бергаптол и V.Y-Диметилаллиловый спирт. [c.23]



Смотреть страницы где упоминается термин Образование фуранового кольца: [c.287]    [c.548]    [c.269]    [c.474]    [c.128]    [c.182]    [c.63]    [c.154]    [c.135]    [c.135]    [c.20]    [c.23]    [c.30]    [c.33]    [c.36]    [c.37]    [c.39]    [c.39]    [c.40]    [c.41]    [c.113]    [c.135]    [c.135]    [c.20]    [c.23]    [c.30]    [c.33]    [c.36]    [c.37]    [c.39]    [c.39]    [c.40]   
Смотреть главы в:

Упражнения по курсу органической химии -> Образование фуранового кольца




ПОИСК







© 2025 chem21.info Реклама на сайте