Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дробление капли жидкости в газовом потоке

    Изучая условия дробления капель в газовом потоке, М. С. Волынский [16, 17] показал, что разрыв капли определенного диаметра н иод действием аэродинамического давления начинается при определенной скорости потока га. Для маловязких жидкостей [c.266]

    Уравнения деформации и условия дробления капель в газовом потоке. При попадании сферической капли в газовый поток она деформируется. Теоретические и экспериментальные исследования поведения капель жидкости в газовом потоке показывают, что форма деформированной капли — эллипсоид вращения с меньшей осью, параллельной вектору относительной скорости. По исследованиям М. С. Волынского [94] при величине критерия Вебера, превышающей его критическое значение в момент максимального сплющивания капли, наступает ее дробление. Опыты выявили два режима распада капель. При условии Ше > [c.45]


    Следовательно, относительная скорость, необходимая для дробления капли жидкости в потоке коксового газа, должна быть в 1,71 раза больше, чем в потоке паровоздушной смеси. Используя критерий We p, можно рассчитать предельную величину диаметра капли, которая может двигаться в газовом потоке заданной скорости, не подвергаясь дроблению, или решить обратную задачу. Такие расчеты бьши проведены для условий движения одиночной капли диаметром 3,36 мм в конфузоре вертикально расположенного СВ производительностью 50 тыс. м /ч газа с нисходящим параллельным потоком газа и капель жидкости. Для диаметра капли 3,36 мм имеются наиболее полные для заданной конструкции аппарата данные по изменению коэффициента сопротивления и деформации капли в конфузоре СВ. Ниже приведены значения критических скоростей газа в горловине СВ в зависимости от начальной скорости капли при критических относительных скоростях для системы воздух — вода 18,9 м/с и коксовый газ — вода 32,3 м/с. Результаты расчета показывают, что для дробления капель жидкости в конфузоре СВ коксовым газом требуются значительно большие скорости газа, чем при дроблении капель воздухом  [c.6]

    ДРОБЛЕНИЕ КАПЛИ ЖИДКОСТИ В ГАЗОВОМ ПОТОКЕ [c.211]

    С ростом скорости газа процесс дробления жидкости газовым потоком усиливается, и образуются капли меньшего диаметра. Наиболее интенсивное влияние на размер капель оказывает изменение скорости газа в интервале от 7 до 50 м/с, при дальнейшем увеличении скорости газа (И > 50 м/с) интенсивность дробления капель снижается. Необходимо отметить, что в наиболее распространенных конструкциях МП ВЦЖ (ротоклоны N и др.), которые работают при скорости газа в контактных устройствах 15 м/с, размер капель в канале значителен и составляет 325-425 мкм. При этих режимных параметрах и размерах капель не достигается качественная очистка газа от мелкодисперсной пыли. Для уменьшения размера капель и повышения эффективности работы этих аппаратов необходимо увеличение скорости газа до 30, 40, 50 м/с и более в зависимости от типа улавливаемой пыли. [c.430]

    Наиболее эффективным аппаратом этого типа является дезинтегратор Дезинтегратор представляет собой мокрый пылеуловитель-вентилятор, состоящий из ста-то ра и ротора, каждый из которых снабжен направляющими лопатками Через сопла внутрь вращающегося ротора подается жидкость Газовый поток, движущийся между кольцами ротора и статора со скоростью от 60 до 90 м/с, обеспечивает интенсивное дробление жидкости на мелкие капли, хороший контакт газов и улавливаемых частиц с жидкостью Направление потока газов в дезинтеграторах не играет существенной ро 1и, так как центробежные силы, развивающиеся при его работе, во много раз превышают силу тяжести Поэтому дезинтеграторы выпускаются в горизонтальном и вертикальном исполнении. В последнем случае распыливающее жидкость сопло устанавливается в нижней части аппарата [c.117]


    Увеличение размеров форсуночного абсорбера сопровождается снижением сопротивления при одинаковых гидравлических условиях. В форсуночном абсорбере грубое дробление жидкости происходит в форсунке. Энергия газового потока тратится на дробление уже готовых крупных капель на более мелкие [4]. Направление движения капли сверху вниз совпадает с силой тяжести, и это позволяет снизить расход энергии газового потока на разгон капель. Чем больше масштаб аппарата и чем больше удельный расход жидкости, тем больше получается экономия электроэнергии в пользу форсуночного абсорбера. [c.121]

    Принцип действия устройств первого типа основан на интенсивном дроблении на капли орошающей жидкости газовым потоком, движущимся с высокой скоростью (60—150 м/с). Аппарат выполняют в виде трубы, имеющей сужающуюся (конфу-зор) и расширяющуюся (диффузор) части. Находящийся между ними участок называется горловиной. Обрабатываемый газ подают в конфузор, а жидкость — в горловину (рис. 4.1). Под влиянием интенсивной турбулизации газового потока частицы пыли оседают на каплях жидкости, которые, проходя через диффузор, укрупняются, а затем выделяются в циклоне или скруббере. Эти аппараты позволяют улавливать очень мелкие частицы (0,1—1 мкм), однако имеют повышенное гидравлическое сопротивление (до 20—30 кПа). [c.138]

    Особенно эффективны для мокрой очистки скрубберы Вентури (турбулентные газопромыватели), состоящие из трубы-распылителя (включает конфузор, горловину и диффузор) и каплеуловителя. Вводимая в конфузор или горловину жидкость сталкивается с газовым потоком при его интенсивной турбулизации (скорость газа в горловине 40-150 м/с), что приводит к дроблению жидкости на мелкие капли и их коагуляции с взвешенными в газе частицами. Эти аппараты бывают низконапорными (гидравлич. сопротивление 3-5 кПа) и высоконапорными (20-30 кПа), к-рые могут обеспечить соотв. до 200 и менее 10 мг/м.  [c.462]

    Скруббер Вентури, наоборот, отличается очень высоким гидравлическим сопротивлением. Оно связано с тем, что в этом аппарате механическая энергия газового потока расходуется на создание очень высокой скорости газа и дробление жидкости. Рабочая зона аппарата представляет собой трубу Вентури плавное сужение (конфузор) для разгона газового потока и затем еще более плавное расширение (диффузор) для уменьшения гидравлического сопротивления. В самом узком месте (горловине) трубы Вентури скорость достигает 30-150 м/с. Перед горловиной в газовый поток вводится жидкость, которая за счет касательных напряжений в высокоскоростном газовом потоке дробится на мелкие капли (40-200 мкм). Развитая поверхность контакта фаз и высокая относительная скорость движения капель создают условия для интенсивного протекания процессов массообмена. [c.42]

    Концентрируемая кислота поступает через дозатор во вторую (по ходу газа) трубу Вентури. Затем в циклоне кислота сепарируется и самотеком направляется в концентратор, выполненный также в виде трубы Вентури. Сконцентрированная до 92,5—95% серная кислота отделяется в циклоне и при 180—220 °С стекает в холодильник. Горячий топочный газ, при помощи которого происходит дробление жидкости на капли размером 100—400 мкм и упаривание кислоты, поступает в концентратор Вентури при 850—900 °С. В трубе он охлаждается до 220—230 °С и выходит из второго циклона при температуре 150 °С. Воздух в установку подается высоконапорной воздуходувкой, создающей перед топкой напор 1700 мм вод. ст. (166,8 кПа). Скорость газового потока в концентраторе около 150 м/с. [c.302]

    Одним из наиболее интересных свойств таких растворов является сопротивление дроблению на капли. Если обычную жидкость заставить течь из трубки, образующаяся струя разбивается на капли. Аналогично, если на струю жидкости направить поток быстро движущегося воздуха, то она разбивается на мельчайшие капли, образуя легкий туман. Такое дробление на капли абсолютно необходимо, например, в карбюраторах двигателей внутреннего сгорания или в форсунках, распыляющих топливо, в газовых турбинах (распыленное [c.167]

    При форсуночном распыле жидкости или дроблении жидкости за счет газового потока (трубы Вентури) размер образующихся капель составляет от 50 до 500 мкм. Оросители, используемые в тарельчатых скрубберах, образуют весьма крупные капли — 600-800 мкм и даже более. В этих же аппаратах образование капли может происходить за счет разрыва пузырей. В этом случае образуются капли, размер которых колеблется в пределах 20-30 мкм и 600-1200 мкм. Доля мелких, так называемых микронных капель невелика, она не превышает 0,30-0,35% (вес.) уноса и не может оказывать влияния на общий характер каплеуноса. Очень мелкие капли (< 10 мкм) образуются при конденсации пара (см. гл. 2). [c.398]

    При вращении разбрызгивающего ротора жидкость поднимается вверх по винтовой спирали и отбрасывается к внутренней стенке аппарата (рис. 3.2.40, 6). Высокая частота вращения ротора обеспечивает интенсивное дробление жидкости и значительную радиальную скорость образующихся при дроблении жидкости капель. Запыленный газовый поток движется перпендикулярно каплям жидкости. [c.311]


    Скоростные газопромыватели - наиболее эффективные мокрые пылеуловители, обеспечивающие тонкую очистку газов от микронной и субмикронной пыли. Принцип действия этих аппаратов основан на интенсивном дроблении газовым потоком, движущимся с высокой скоростью (60... 150 м/с), орошающей его жидкостью. Осаждению частиц пыли на каплях орошающей жидкости способствуют турбулентность газового потока и высокие относительные скорости между улавливаемыми частицами пыли и каплями. [c.311]

    На принципе дробления жидкости на капли при ударе запыленного газового потока о ее поверхность основано действие скруббера ударного действия (скруббер Дойля), изображенного на рис. 107. В нем газовый поток проходит через щель выходной трубы со скоростью [c.179]

    Принцип действия СПУ заключается в следующем. Вода, вводимая в поток запыленных газов, движущихся с высокой скоростью (обычно 70—100 и более м/с), дробится на мелкие капли. Необходимая для дробления жидкости энергия заимствуется в основном у газового потока. Высокая степень турбулентности газового потока способствует дроблению жидкости и столкновениям частиц с каплями жидкости. Относительно крупные капли жидкости вместе с частицами пыли легко улавливаются затем в простейших пылеуловителях (например, в мокрых циклонах). [c.192]

    Сущность способа пневматического распыления заключается в образовании аэрозоля путем дробления жидкого лакокрасочного материала струей сжатого газа (обычно воздуха). Образующийся аэрозоль движется в направлении газовой струи и при ударе о деталь коагулирует капли сливаются, образуя на поверхности слой жидкого лака или краски. Для распыления лакокрасочного материала применяют форсунки с кольцевым газовым каналом и наружным смешением жидкости и газа (рис. 7.1). При малой скорости газового потока жидкость не дробится. Существует предельная критическая скорость истечения газа Шкр, при которой происходит распыление. Она является функцией давления газа р и его удельного объема V при температуре распыления Т  [c.200]

    При распылении жидкости форсунками или дроблении жидкости за счет энергии газового потока (скрубберы Вентури) размер образующихся капель от 50 до 500 мкм Оросители, используемые в та рельчатых скрубберах, образуют крупные капли — 600—800 мкм и более В этих же аппаратах образование капель может происходить в процессе разрыва пузырей В этом случае образуются капли, которые лежат в двух интервалах 20—30 и 600— 1200 мкм Доля мелких, так называемых капель спутников, иевелика, не превышает 0,30—0,35% уноса (по массе) и не можат [c.139]

    Как было показано ранее, мелкие частицы аэрозоля практически не улавливаются каплями большого и среднего размера, поскольку вследствие малой инерции они огибают каплю (и любое другое препятствие) по линиям тока газов. Для очистки газов от микронной и субмикронной пыли главным образом применяют скоростные скрубберы. Принцип действия этих аппаратов основан на интенсивном дроблении газовым потоком, движущимся со скоростью 40-150 м/с, орошающей его жидкости. Осаждению частиц на каплях орошающей жидкости способствуют также высокие относительные скорости между ними. [c.380]

    При введении жидкости в газовый поток дробление крупных капель на более мелкие за счет энергии турбулентного потока происходит, когда внешние силы, действующие на каплю, преодолевают силы поверхностного натяжения. Исходя из равновесия динамического давления на каплю и сил поверхностного натяжения Прандтль получил следующее выражение для диаметра получающихся капель й  [c.381]

    При подаче орошающей жидкости в трубу Вентури ее начальная скорость незначительна. За счет сил динамического давления газового потока капли одновременно с дроблением получают значительные ускорения и в конце горловины приобретают скорость, близкую к скорости газового потока. В диффузоре скорости газового потока и капель падают, причем вследствие сил инерции скорость капель превышает скорость газового потока. Поэтому захват частиц каплями наиболее интенсивно идет в конце конфузора и в горловине, где скорость газа относительно капли особенно значительна и кинематическая коагуляция протекает наиболее эффективно. [c.382]

    О разлете слоев жидкости под действием взрывных волн. Пусть имеется плоский, цилиндрический или сферический заряд взрывчатого вещества (ВВ) и охватывающий его слой жидкости. Между зарядом ВВ и жидкостью может быть слой инертного газа. После взрыва жидкость придет в движение, раздробится на капли. Требуется найти дальность разлета капель к моменту прекращения движения. Задача детального описания этого процесса слонина. Целесообразнее рассматривать отдельно две стадии и каждую в рамках своих допущений и схематизаций. Первая стадия — деформация и дробление слоя жидкости под действием взрывной волны, в результате чего струи газа прорываются через жидкость, формируя ударную волну впереди жидкости. Вторая стадия — разлет образовавшихся и разогнанных до некоторой скорости капель жидкости, которые взаимодействуют с газовым потоком, инициированным взрывной волной. [c.357]

    Форсуночный абсорбер Вентури. Жидкость подается через форсунку, установленную в конфузоре параллельно оси абсорбера. Первичное дробление жидкости на крупные капли происходит в рсунке в результате гидростатического давления. Вторичное дробление, на капли малого размера, осуществляется энергией газового потока. Пом1 мо горловины оно возможно в конце диффузора [41.  [c.62]

    Двухфазными называются потоки, состоящие из сплошной фазы и распределенной в ней дисперсной фазы. Соответственно агрегатному состоянию этих фаз различают потоки двух видов 1) газ — твердые частицы (г азовзвеси), жидкость — твердые частицы (суспензии) и 2) газ—жидкость и жидкость— жидкость (эмульсии). Потоки первого типа отличаются постоянством формы и размеров дисперсной фазы (твердых частиц) в потоках второго типа частицы дисперсной фазы (газовые пузырьки, капли) могут изменять свою форму и размеры благодаря дроблению и коалесценции в зависимости от их физических свойств и скорости. Двухфазные потоки часто встречаются в аппаратах для осуществления ряда технологических процессов их приходится также транспортировать в трубопроводах на различные расстояния. [c.87]

    Скоростные газопромыватели — это эффективные высоконапорные мокрые пылеуловители капельного действия. Их применяют главным образом для очистки газов от микронной и субмикронной пыли. Принцип действия этих аппаратов основан на интенсивном дроблении орошающей жидкости запыленным газовым потоком, движущимся с большой скоростью (от 60 до 150 м/с). Осаждению частщ пыли на каплях орошающей жидкости способствуют турбулентность газового потока и высокие относительные скорости улавливаемых частиц пыли и капель. [c.139]

    Турбулентный газопромыватель [21, получивший широкое применение для очистки газа от пыли и тумана. Жидкость подается в нем перпендикулярно направлению движения газового потока через сопла, установленные на горловине, или через отверстия в наконечнике, расположенном по оси аппарата также в горловине. Жидкость фобится на капли и изменяет направление своего движения (из перпендикулярного оно становится параллельным оси аппарата) за счет энергии газового потока. Дробление жидкости проходит в одну стадию [3]. [c.62]


Смотреть страницы где упоминается термин Дробление капли жидкости в газовом потоке: [c.217]    [c.236]    [c.189]    [c.236]    [c.205]    [c.223]   
Смотреть главы в:

Распыливание жидкостей -> Дробление капли жидкости в газовом потоке




ПОИСК





Смотрите так же термины и статьи:

Дробление

Дробление капли в газовом потоке

Капли



© 2025 chem21.info Реклама на сайте