Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы соединений элементов III группы

    Комплексные соединения молибдена и вольфрама. Вольфрам и молибден всех степеней окисления образуют очень большое число комплексов как с неорганическими, так и с органическими соединениями, группами и радикалами. В одних комплексах эти элементы являются центральными атомами-комплексообразователями, в других же они входят в состав лигандов. [c.240]

    Комплексы соединений элементов /// группы  [c.275]


    III.3.2. Комплексы соединений элементов III группы [c.115]

    II 1.3.3. Комплексы соединений элементов IV группы [c.117]

    Комплексы соединений элементов 111 группы [c.269]

    Комплексы переходных металлов с органическими соединениями элементов V группы, главным образом азота и фосфора. Распространенными лигандами являются, например, триал-кил- или триарилфосфины, а также фосфиты. [c.239]

    Для третьей группы катионов (во внешней электронной оболочке находится 18 или 18 + 2 электронов) характерны иные зависимости. Большое число электронов во внешней оболочке способствует их сравнительно легкой деформируемости и поляризуемости. Жесткость электронной оболочки не так велика, как у катионов первой группы. В комплексах катионов третьей группы преобладает ковалентная связь, осуществляемая парой электронов, находящихся в совместном владении катиона металла и лиганда. Поэтому во многих случаях изменение устойчивости комплексов катионов элементов одной и той же группы периодической системы хорошо коррелирует со способностью этих катионов к образованию ковалентной связи. С количественной стороны способ1Юсть к образованию ковалентных связей можно описать ковалентной характеристикой, предложенной К. Б. Яци-мирским для объяснения растворимости некоторых малорастворимых соединений. Ковалентная характеристика представляет собой разность между энергией ионизации атома и теплотой гидратации образующегося иона. Чем больше энергия ионизации, тем больше энергии выделяется при обратном процессе — присоединении к нону электронов, которые отдает лиганд при образовании комплексного иона. С другой стороны, чем меньше теплота гидратации, тем меньше [c.254]

    Характерная особенность кислородсодержащих соединений элементов группы VB со степенью окисления + 4 — их амфотерный характер. Так, оксид VO2, нерастворимый в воде, легко взаимодействует со щелочами, образуя оксованадаты (IV) состава Me [V40g], называемые иногда ванадитами. Они являются солями не выделенной в свободном виде кислоты H2V4O9. Также легко VO2 взаимодействует с кислотами, образуя производные оксованадила VO — очень прочной группы, входящей в состав многих солей в виде катиона, а также содержащейся в ряде анионных комплексов  [c.466]

    Известны комплексы четырехвалентных элементов этой группы. Кроме того, описаны производные Sn(II) и РЬ(П). Соединения четырехвалентных элементов с координационным числом 6 имеют октаэдрическое строение. Комплексы двухвалентного свинца и олова, характеризующиеся аналитическим координационным числом 4 в действительности в твердом состоянии представляют собой сложные полимерные структуры с октаэдрической координацией около иона металла. Сведения о плоской структуре комплексов Sn(II) и РЬ(П) неполны и нуждаются в дальнейшем подтверждении. К соединениям с аномальными координационными числами относятся Na( 5H5NH)2[Sn(N S) ], [c.203]


    В общем наиболее устойчивые комплексные соединения образуют металлы VIII группы и элементы побочных подгрупп и VII групп, т. е. самыми прочными оказываются комплексы элементов середины больших периодов. Прочность комплексных соединений, образуемых элементами одной и той же группы, изменяется по мере увеличения порядкового номера элемента — она уменьшается у соединений, образованных элементами главной подгруппы I группы, и увеличивается у соединений элементов главных подгрупп VII, VI, V, IV групп. Аналогичную закономерность можно установить для элементов побочных групп. [c.273]

    Выше, в главе I, была дана общая характеристика комплексных соединений. Здесь мы рассмотрим кратко образование и свойства химических связей в комплексах переходных элементов (см. также раздел И 1.7), ограничиваясь комплексами с координационными числами 4 и 6, так как именно такие числа характерны для подавляющего большинства известных в настоящее время комплексов. В соединениях вида MLiL2...L , где М — атом или ион переходного металла, а L — лиганд, т. е. атом или группа атомов, непосредственно связанная с центральным атомом М комплекса, число лигандов п равно 4 и 6. Обычно четыре лиганда располагаются вокруг центрального атома или в одной плоскости (рис. И 1.39, а), или в вершинах тетраэдра (рис. ili.39, б , шесть лигандов располагаются в вершинах октаэдра (рис. 1И.39, е). [c.209]

    В большинстве комплексных соединений элементы УП1Б группы имеют координационное число 6 (октаэдрическая форма) железо, кобальт н никель образуют также комплексы с координационным числом 4 (тетраэдрическая форма) палла-дин(П) и платина(П)—комплексы с тем же координационным числом, но с плоскоквадратной геометрией. [c.245]

    Жесткая, малодеформируемая электронная оболочка типа инертного газа как для Ве +, так и для всех остальных катионов обсуждаемой группы обусловливает преобладающе ионный тип связи №+ — лиганд, поскольку ионы М2+ не имеют пустых ячеек, необходимых для предоставления лиганду с целью образовать донорно-акцепторную связь, и, кроме того, не имеют электронных пар, подходящих для образования л-дативной связи. Таким образом, комплексные соединения элементов этой группы должны быть построены за счет ион-ионного или ион-дипольного взаимодействия. Априори можно сказать, что самым сильным комплексообразователем в ряду Ве—Ба будет ион Ве + благодаря его маленькому размеру и большой плотности заряда. Самые неустойчивые комплексы должны быть у Ва. [c.42]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    Сходство элементов 1Б группы с элементами 1А группы в основном сводится к сходству их оптических спектров. Между элементами 15 группы сходство также ограничено. Оно сводится к следующему. Элементы могут давать производные в степени окисления + 1 соединения элементов в этой степени обладают, как правило, малой прочностью. Для них характерно комплексоо(5ра-зование. Устойчивость комплексов М (I) в ряду Р—С1—В—I возрастает весьма характерны однотипные комплексы [МГ2] . [c.554]

    Кадмий имеет приятный синевато-белый цвет. Этот металл находит все большее применение в качестве материала для защитных покрытий железа и стали. Кадмиевое покрытие наносят электролитическим методом, причем электролитическую вавну готовят из веществ, содержащих ионы цианидного комплекса кадмия d (ON) . Кадмий применяют также при производстве некоторых сплавов он входит, например, в состав легкоплавких сплавов, используемых в автоматических огнетушителях. Сплав Вуда, плавящийся при 65,5 С, содержит 50% Bi, 25 Pb, 12,5 Sn и 12,5% d. Вследствие токсичности соединений элементов этой группы применять кухонную посуду, покрытую кадмием, не следует пары цинка, кадмия и ртути ядовиты. [c.568]


    При взаимодействии соединений 2.3.19—2.3.22, содержащих ароматическую карбоксильную группу, с переходными элементами и лантаноидами образуются устойчивые монопротонированные MHL и нормальные ML комплексы Соединение 2.3.22 образует с катионами переходных металлов и лантаноидов бипротонированные комплексы MH2L. С увеличением pH происходит депротонизация комплекса, появляется возможность его перестройки и образования двух координационных сфер. Показано существование водорастворимых комплексов с соотноше- [c.246]


Смотреть страницы где упоминается термин Комплексы соединений элементов III группы: [c.466]    [c.80]    [c.80]    [c.46]    [c.46]    [c.132]    [c.177]    [c.204]    [c.146]    [c.268]   
Смотреть главы в:

Донорно-акцепторная связь -> Комплексы соединений элементов III группы

Донорно-акцепторная связь -> Комплексы соединений элементов III группы




ПОИСК





Смотрите так же термины и статьи:

Комплексы галогенсиланов и других кремнеорганических соединений с галогенидами элементов II группы

Элемент группы

Элементы II соединения

Элементы комплекса

соединения группа



© 2025 chem21.info Реклама на сайте