Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические с карбоксильными производными

    Фенолокислоты в растениях встречаются повсеместно и в достаточно широком структурном диапазоне. Во-первых, это moho-, ди- и тригидрок-сибензойные кислоты, широко распространенные в растениях, как накапливающиеся, так и в качестве промежуточных на биосинтетических путях. Другая группа — это гидроксифенилук-сусные кислоты, распространенные в значительно меньшей степени. Третья группа — это коричные кислоты, широко распространенные, но как правило, присутствующие в небольших концентрациях и лежащие на биосинтетических путях к ароматическим кислородсодержащим гетероциклам. Весьма часто оксикислоты входят в состав эфирных масел многих растений в виде метиловых (простых) эфиров, а также встречаются производные с карбоксильной группой, восстановленной до альдегидной и спиртовой (схема 8.1.2). [c.194]


    Сульфирование дифениламина и его производных. Большинство сульфокислот дифениламинового ряда получено конденсацией ароматических аминов с галоидсодержащими соединениями, в которых галоид активирован присутствием карбоксильной или [c.78]

    Исследованию подвергались ароматические углеводороды, фенолы, ароматические карбоксильные кислоты, пирены и липиды. Их растворимость уменьшалась с увеличением молекулярной массы и особенно при введении в молекулу полярной функциональной группы. Так, производные бензола, соединенные с тремя фенольными гидроксилами, еще экстрагировались, так же как и соединения с одной карбоксильной и двумя гидроксильными группами. Соединения с одной карбоксильной и тремя или более гидроксильными группами углекислым газом не экстрагировались. [c.114]

    Эти соединения можно рассматривать и как производные кислот, образованные замещением гидроксила в карбоксильной группе Остатком ароматического амина и поэтому их называют анилидами кислот (это общее название происходит от названия таких производных, образуемых простейшим ароматическим амином —анилином). Например, при нагревании анилина с уксусной кислотой получается анилид уксусной кислоты, или ацетанилид [c.389]

    Несмотря на предполагаемое многими учеными существование ненасыщенных валентностей у производных бензола, ядро ароматических углеводородов сравнительно стойко к окислению. Так, например, бензол окисляется очень медленно при действии водного раствора перманганата или хромовой кислоты. Сравнительная стойкость ароматического ядра характеризуется по.мимо этого отношением алкилбензолов к окислителям. При этом преимуще И венно подвергается окислению боковая цепь с образованием карбонильных и карбоксильных производных бензола, в зависимости от условий опыта. [c.56]

    Длинные боковые цепи при окислении постепенно укорачиваются и в конечном итоге получаются ароматические кислоты — производные бензола, у которого один или несколько атомов водорода замещены одной или несколькими карбоксильными группами. [c.122]

    В настоящей работе исследовано взаимодействие ионов пятивалентной сурьмы с 22 производными димеркаптотиопирона, содержащих алкильные, ароматические, карбоксильные и другие радикалы общего состава [c.68]

    Кроме того, при получении винильных производных ароматических углеводородов иногда используют соединения, уже содержащие винильную группу в этом случае в исходном винильном производном обязательно должна быть реакционно-способная группа — окси,- нитро-, амино-, карбоксильная, нитрильная, альдегидная или какая-либо иная группа [98—100, ПО, 115, 132, 134, 138, 149, 156, 160, 166, 194, 374]. [c.16]


    В общем дикарбоновые кислоты обнаруживают те же химические свойства, что и монокарбоновые кислоты. Их можно превратить в соли, хлорангидриды,. сложные эфиры, амиды и ангидриды. Алифатические кислоты подвергаются а-галогенированию в присутствии фосфора, а ароматические кислоты — замещению в кольцо. Можно получать как соединения, в которых лишь одна карбоксильная группа была превращена в другие функциональные группы, так и соединения, в которых две карбоксильные группы превращены в различные производные. [c.863]

    При перегонке нефтяные кислоты распределяются по фракциям. Низшие фракции кислот (до Сб)-алифатические, а фракции С7—Сю-сме-си алифатических и нафтеновых с преобладанием последних. Кислоты, выделенные из лигроиновых, керосиновых и газойлевых фракций (Сю— j4) являются практически целиком нафтеновыми. Нафтеновые кислоты —С20 преобладают и в масляных дистиллятах. Им сопутствуют в этих случаях нафтено-ароматические и ароматические кислоты (5-15%), а иногда также и карбоновые кислоты гетероциклической структуры, например производные бензтиофена [1]. Многие представители гетероциклических кислот обнаружены в сырой нефти и в отдельных случаях их содержание может приблизиться к содержанию нафтеновых и нафтено-ароматиче-ских кислот [2]. Высокомолекулярные кислоты, выделенные из остаточных фракций нефти, могут представлять собой карбоксильные производные всех основных структур углеводородов исходной нефти [3]. [c.7]

    К карбоновым кислотам относят соединения, которые характеризуются. наличием в молекуле карбоксильной группы (—СООН) и радикала алифатического, ароматического или нафтенового характера. Работами акад Н. Д. Зелинского установлено, что в нефтях и нефтепродуктах преобладают кислоты, содержащие производные нафтеновых углеводородов, и, в частности, циклопентаны. [c.26]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]

    Образование производных. Аналогично кислотам жирного ряда, ароматические кислоты образуют галогенангидриды, ангидриды, сложные эфиры, амиды и другие производные, представляющие собой продукты замещения гидроксила в карбоксильной группе соответствующими атомами или группами. О важнейших из этих производных см. при отдельных представителях ароматических кислот (стр. 157 и сл., 380 и сл.). [c.378]

    Содержащиеся в маслах соединения кислорода разделяются по крайней мере на три различных типа. Большое разнообразие этих соединений в- маслах зависит в значительной степени от характера исходной нефти. Нафтеновые кислоты встречаются во многих дистиллятах, они могут рассматриваться как соединения, имеющие циклическую нафтеновую структуру с присоединенными к ней одной или несколькими карбоксильными группами. Другие соединения кислорода, обнаруженные в нефтяных маслах, являются сложными производными фенола и, может быть, нафтола. Эти соединения имеют структуру, типичную для ароматических углеводородов, но содержат гидроксильные группы. [c.106]

    Введение полярной, но гидрофобной нитрогруппы в молекулу производного бензола приводит к резкому возрастанию /Сэ при экстрагировании эфирами уксусной кислоты. Такое же влияние, но более слабое, оказывает введение в молекулу ароматического соединения карбоксильной группы, если, разумеется, экстракция осуществляется из достаточно кислого раствора. [c.68]

    В разд. 20.10 уже говорилось о том, что при взаимодействии ангидридов с различными веществами образуются ацильные производные. Так, например, они реагируют со спиртами с образованием сложных эфиров, с аммиаком или аминами с образованием амидов, с ароматическими углеводородами (реакция Фриделя — Крафтса) с образованием кетонов в каждой из этих реакций лишь одна половина ангидрида участвует в образовании ацильного производного, а другая образует карбоксильную группу. [c.867]

    Замещение атома водорода на атом галоида, гидроксильную, карбоксильную, нитро- или аминогруппу приводит к повышению температуры плавления. При замещении атомом галоида температура плавления повышается соответственно повышению атомного веса галоида иодзамещенные производные плавятся выше бром-и хлорзамещенных. Нитросоединения имеют более высокую температуру плавления, чем соответствующие галоидные соединения. В ароматическом ряду это правило замещения атома водорода имеет исключения, обусловленные нарушением симметрии молекулы бензола, нафталина и т. п. [c.186]


    Ацетат кальция является эффективной противозадирной присадкой в смазках на комплексных высокоацетатных кальциевых загустителях, но может использоваться и в других композициях. При добавлении 10% ацетата или тартрата кальция нагрузка, при которой может работать смазка на глинистом загустителе на машине Тимкена, возрастает примерно с 13,5 до 27 кГ [293]. Аналогично действует ацетат кальция и в смазке на полиэтилене [204] или стеарате сахарозы [225], как загустителях. Ароматические карбоксильные производные, например бензоат или п-хлорбензоат натрия, также повышают несущую способность консистентных смазок [139]. [c.151]

    Это вещество образует полярный кристалл, на одном конце которого находятся метильные группы, а на другом - пгрста-бутильные. Пока нет полной ясности, почему некоторые классы веществ дают предпочтительно полярные кристаллы, в то время как другие, со сходными характеристиками, таким свойством не обладают. Например, ароматические соединения с определенными функциональными группами (скажем, аминогруппа) чаще образуют полярные кристаллы, чем аналогичные соединения, но с другими группами (такими, как карбоксильная). Производные бензола с. м /иа-замещением чаще образуют полярные кристаллы, чем орта- и нд/ о-замещенные. Иногда полярная ось молекулы ориентирована почти перпендикулярно полярной оси кристалла, и только небольшая составляющая молекулярной полярности вносит свой вклад в полярность кристалла. [c.66]

Таблица 20.7 Величины / / и (отнесенные к вератровому альдегиду)ХЮО 2,4-ДНФГ-производных некоторых ароматических карбоксильных соединений, полученные на слоях силикагеля с добавкой крахмала в качестве связующего. Растворитель этилацетат—петролейный эфир (75—120°С) (1 2) длина пути разделения 14 см [47] Таблица 20.7 Величины / / и (отнесенные к <a href="/info/36213">вератровому альдегиду</a>)ХЮО 2,4-ДНФГ-<a href="/info/657596">производных некоторых</a> ароматических карбоксильных соединений, полученные на <a href="/info/168530">слоях силикагеля</a> с добавкой крахмала в <a href="/info/1608864">качестве связующего</a>. <a href="/info/196135">Растворитель этилацетат</a>—<a href="/info/11742">петролейный эфир</a> (75—120°С) (1 2) <a href="/info/215256">длина пути</a> разделения 14 см [47]
    Среди карбоксильных производных с 0,0-лигандами алифатические а-монооксикарбоновые кислоты, например, гликолевая и молочная, применяются иногда в качестве маскирующих реагентов. Напротив, ароматическая миндальная кислота (ХИ) имеет значение как реагент для осаждения циркония из водных растворов причем низкая растворимость комплекса циркония с миндальной кислотой состава 1 4 объясняется тем, что отдельные молекулы соединены водородными мостиковыми связями. а-Кетокислоты также образуют 5-членные хелатные циклы, но не применяются в аналитической химии. Щавелевая кислота используется как для осаждения, так и для маскирования металлов. [c.74]

    В ароматических кислотах карбоксильная группа непосредственно связана с бензольным ядром или пиридином. Из-за относительно малой растворимости ароматические кислоты применяются в виде солей аминов или щелочных металлов или в виде растворов их эфиров в органических растворителях. Простейщим примером ароматических кислот является бензойная кислота (XI), но она не проявляет гербицидных свойств. В целом ароматические кислоты, производные бензола, — весьма устойчивые соединения, в то время как пиридинкарбоновые кислоты, легко разлагаются. [c.334]

    Карбонилирование и гидроформилирование (присоединение окиси углерода и водорода) с использованием карбонила никеля в качестве катализатора применяют при получении алифатических и ароматических карбоксильных кислот из ацетилена при высоких температурах (200—400°) и повышенных давлениях (200—1500 ат) [241—246]. Эти же кислоты получаются из хлорированных углеводородов, воды и окиси углерода при температурах 180—450° и давлении 95—500 ат. При наличии эфирных групп арилгалоиды дают эфиры. Карбонил никеля катализирует синтез аминов (температура 160—260°, давление 100—2000 ат) [247], ангидридов карбоксильных кислот (температура 270— 300°, давление 600—800 ат), альдегидов, ацеталей, эфиров и спиртов (температура О—250°, давление 375—3000 ат) [240, 248], гидроцианирование коньюгированных олефинов (при температуре 80—150°), синтез акриловых кислот и ее производных [249, 250] и эфиров [251—255], удваивание молекул и получение диенов [256], синтез гидрохинона [80] и т. д. [258—261]. [c.240]

    В последние годы в хромато-масс-спектрометрии ш poкo применяются кварцевые капиллярные колонки с привитыми силиконовыми неподвижными фазами. Их использование позволяет анализировать крайне труднолетучие и термически нестабильные соединения, например дипептиды (после получения производных по амино- и карбоксильным группам), олигосахариды (также после соответствующей дериватизации), токсичные полихлорированные ароматические углеводороды и т. д. Кроме того, подобные фазы устойчивы к действию больших количеств (до 500 мкл) агрессивных растворителей, в том числе воды, что существенно расширяет возможности хромато-масс-спектрометрии при анализе следов органических соединений. [c.206]

    Возможно, это обусловлено тем, что алкильные группы, занимающие большое пространство по соседству с карбоксильной группой, мешают образованию промежуточного ком]ялекса, получающегося в результате ионного присоединения. Еще более отчетливо это видно на примерах подавления каталитической этерификации в ряду производных бензойной кислоты, содержащих заместители в обоих орто-положе-ниях. Это явление было открыто и тщательно исследовано В. Мейеролт (1894), но отдельные случаи такого блокирующего действия были отмечены еще раньше Гофманом (1872), наблюдавшим, что некоторые производные диалкиланилинов, замещенные в орто-положениях к функциональной группе, очень стойко выдерживают действие галоидных алкилов. В. Мейер исследовал способность ароматических кислот образовывать эфиры, проводя этерификацию как при кипячении в течение 3—5 ч раствора кислоты в метаноле, содержавшем 3% хлористого водорода (метод Фишера), так и насыщением хлористым водородом раствора кислоты в метаноле на холоду, причем раствор затем оставляли стоять в течение ночи. Он установил, что в случае бензойной кис- [c.364]

    Иначе реагируют ароматические карбоновые кислоты Группа СООН не восстанавливается при действии ме-гатлов в аммиаке, но вызванная ею поляризация кольца облегчает атаку электронами атома углерода. Благодаря этому производные бензольных углеводоро чов, содержащие карбоксильную группу, даюг 1,4 дигидро-1-карбоно-вые кислоты [228, 2291. [c.89]

    К аромагическим оксикислотам относятся соединения, которые наряду с карбоксильной группой у ароматического ядра содержат гидроксильную (фенольную) группу. Введение в молекулу фенола карбоксильной группы ослабляет антисептическое действие, но вместе с тем возникают антипирети-ческие и анальгетические свойства, К их числу относятся салициловая (о-оксибензойная) кислота и ее производные. Из трех возможных окснбен-зонных кислот орто-изомерная (салициловая) наименее токсична [c.167]

    Какая из реакций будет преобладать, зависит от строения кислоты и азида и от температуры, при которой ведется процесс. Из ароматических азидов (через соответствующие эфиры изоциановой кислоты) образуются главным образом симметричные алкильные производные мочевины и ангндриды, а из алифатических азидов — главным образом ациламины с выходом 60—80 /о [127, 245—247]. Строение кислоты не играет большой роли, исключая те случаи, когда оно сильно влияет на рК карбоксильной группы более сильные кислоты, папример циануксусная и трихлоруксусная, образуют почти исключительно ациламины, даже с ароматическими эфирами изоциановой кислоты [127]. Комнатная температура благоприятствует образованию ациламинов, а повышенная — способствует реакцни диспропорционирования [127]. Повидимому, предпочтительнее сначала проводить перегруппировку в инертном растворителе, а затем обрабатывать образовавшийся эфир изоциановой кислоты безводной кислотой. [c.359]

    В СССР, помимо нефти и графита, были предложены в качестве смазочных и противоизносных добавок полиоксиэтилированные алкилфенолы (ОП-10) [7], сульфонол [119] и продукты на основе различных карбоновых кислот и их производных [57]. Наибольшее распространение получил окисленный петролатум. Исходный петролатум — отход, полученный при депарафинизации авиационных масел, является смесью парафиновых, нафтеновых и высокомолекулярных ароматических углеводородов. При окислении их кислородом воздуха при 140—160° С в присутствии перманганата калия в результате распада образующихся гидроперекисей возникают кислородные соединения ветвистого строения с одной, двумя и более функциональными группами, из которых наибольшее значение имеют сложные эфиры и соединения, обладающие, наряду со свободными гидроксилами и карбоксилами, лактонной и лактидными группами. Всю совокупность кислых соединений условно называют эфирокислотами [22 ]. На одну молекулу в среднем приходится 1,75 карбоксильных трупп, 0,12 свободных и 0,82 связанных гидроксила. Весьма приближенная эмпирическая формула этого продукта — С45Ндо04д. При более глу- [c.218]

    Дальнейшее развитие получило это направление в синтезе фосфорсодержащих комплексонов при использовании в качестве фосфорной компоненты трихлорида фосфора, гидролизующегося в процессе реакции до фосфористой кислоты [105—109]. Варьирование в указанной реакции карбонильной компоненты (формальдегид, альдегиды и кетоны [3]) и природы амина (алифатического, гетероциклического ряда) позволяет широко использовать эти реакции для получения полиаминполиалкилен-фосфоновых кислот различного строения полностью фосфори-лированные производные полиаминов, комплексоны с гетероатомами и ароматическими радикалами, комплексоны, содержащие одновременно карбоксильные и фосфоновые, фосфоновые и гидроксильные группировки. [c.60]

    Реакции подлинности на ПАС-Ыа обусловлены тремя функциональными группами ароматической аминогруппой (см. Амиды сульфаниловой кислоты ), фенольным гидроксилом (см, Фенолы ), карбоксильной группой (см. Ароматические кислоты и их производные ). [c.269]

    Для синтеза полиамидов используют алифатические и ароматические диамины, первые из них являются сильными нуклеофильными агентами и поэтому они легко реагируют как с кислотами, так и со всеми их производными. Легко (иногда даже при комнатной температуре) алифатические амины реагируют с эфирами карбоновых кислот. Более слабые нуклеофильные агенты - ароматические амины - без катализатора взаимодействуют лишь с хлорангидридами кислот. Синтез полиамидов осуществляют обычно в расплаве (в массе) или в растворе. Равновесный характер процесса полиа.мидирования карбоновых кислот и их эфиров для получения высокомолекулярных полимеров требует достаточно полного удаления И5 реакционной среды низкомолекулярных побочных продуктов реакции. Поэтому завершающий этап процесса проводят под вакуумом. Для обозначения химического состава полиамидов применяют числовую и цифровую системы, например, наименование полиамид 6,6 расшифровывают так первая цифра до запятой указывает число атомов углерода в диамине (взятом для синтеза) - гексаметилендиамин, а вторая - в дикарбоновой кислоте, считая углерод карбоксильных групп,- адипиновой кислоте. Полиамид 6,Т означает, что он получен из гексаметилендиамина и терефталевой кислоты. Названия сополимеров складываются из названия отдельных полимеров, составляющих полиамид, например, сополиамид 6,8/6,4 (55 45) означает, что сополимер на 55% состоит из полиамида 6,8 и [c.90]

    Азидсодержащие светочувствительные составы создаются на основе ароматических или гетероароматических азидов, полимеров или олигомеров и растворителей различной полярности. Среди структур арилазидов, применяемых в фотолитографической практике, можно выделить соединения, поглощающие в области 250—300 нм и используемые в фоторезистах коротковолнового УФ-света соединения с развитой системой сопряжения, чаще других бис(азидобензилиденовые) производные кетонов, поглощающие в области максимальной эмиссии ртутных ламп среднего и высокого давления 310—440 нм диазиды, включающие систему конденсированных ядер с поглощением до 600 нм, пригодные для проекционной фотолитографии. Введением сульфо-, гидрокси- или карбоксильных групп в ароматические ядра светочувствительным азидам придается водорастворимость. [c.134]


Смотреть страницы где упоминается термин Ароматические с карбоксильными производными: [c.118]    [c.140]    [c.512]    [c.92]    [c.245]    [c.292]    [c.168]    [c.351]    [c.45]    [c.24]    [c.95]    [c.104]    [c.434]   
Принципы органического синтеза (1962) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксильный ион



© 2025 chem21.info Реклама на сайте