Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость коллоидных растворов. Строение коллоидных частиц

    Устойчивость коллоидных растворов. Строение коллоидных частиц 156 [c.477]

    Устойчивость коллоидных растворов обусловлена присутствием стабилизатора, т. е. электролита, и зависит от величины аряда гранулы ( -потенциала). Чем выше этот потенциал, тем сильнее оказываются силы взаимного отталкивания частиц, препятствующие их объединению при столкновениях, наблюдающихся в результате броуновского движения. Исходя из строения коллоидных мицелл Agi в избытке AgNOg, легко представить строение других мицелл. Строение мицеллы Agi в избытке KI можно изобразить схемой [c.152]


    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дисперсоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (коагуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Фрейндлих и Кройт теорию кинетики коагуляции разработал Смолу-ховский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (1917, Лангмюр 1890, Рэлей и др.). В России в этот период важные работы провел Ду-манский (с 1903 г., измерения электропроводности в коллоидных растворах, в 1913 г. применение центрифуги для определения размеров частиц), который с 1912 г. начал читать первый курс коллоидной химии. Весьма важным явилось открытие хроматографии Цветом (1903), исследования поверхностного натяжения растворов Антоновым (1907) и Шишковским (1908), исследования по адсорбции Титова (1910), Шилова (1912) и Гурвича (1912), создание противогаза Зелинским (1916) и т. д. [c.10]

    Основным отличительным признаком суспензий является их кинетическая неустойчивость. Наряду с этим суспензии имеют ряд признаков, сближающих их с коллоидными растворами. Строение частиц суспензий напоминает строение частиц лиофобных золей. И в том и в другом случае частица состоит из большого числа несложных молекул или атомов. Так же как и коллоидные растворы, суспензии являются системами гетерогенными, обладающими значительным запасом свободной поверхностной энергии. Для перехода суспензии в устойчивое состояние должно произойти уменьшение запаса свободной поверхностной энергии, что осуществляется в результате адсорбции веществ, понижающих поверхностное натяжение на границе раздела между частицами суспензии и дисперсионной средой. [c.240]

    Еще основатель коллоидной химии Грэм предположил, что особые свойства коллоидов обусловлены их полимерным строением. Первыми объектами изучения в коллоидной химии были растворы высокомолекулярных соединений желатины, гуммиарабика, крахмала и др. Хотя в то время не удавалось определить строение коллоидных частиц, принадлежность растворов этих соединений к коллоидным системам не подвергалась сомнению. Считали, что все коллоидные системы термодинамически неустойчивы и соответственно эта особенность распространялась на растворы ВМС. Дальнейшими исследованиями были установлены отличия растворов ВМС от других коллоидных систем. Так, для растворов ВМС характерны большая вязкость, высокая устойчивость, способность к набуханию. Это послужило основанием отнести растворы ВМС, как и растворы коллоидных ПАВ, к лиофильным системам, при этом подразумевалось большое сродство частиц к растворителю. [c.356]


    Избыток одного из реагентов является необходимым условием для получения достаточно устойчивого золя, и от того, какой из реагентов взят в избытке, зависят многие физические и химические свойства полученного коллоидного раствора. Если, например, приливать азотнокислое серебро к иодистому калию так, чтобы в системе осталось некоторое количество непрореагировавшего иодистого калия, то получаются золи с отрицательно заряженными частицами (стр. 15). Если же в избытке был взят раствор азотнокислого серебра, то частицы золя заряжены положительно. В обоих случаях заряд частиц объясняется преимущественной адсорбцией одноименного иона, находящегося в избытке в растворе, окружающем иодистое серебро. Обычно устойчивость отрицательно заряженных золей иодистого серебра выше, чем положительно заряженных это объясняется тем, что ион адсорбируется сильнее, чем ион Ag+. Строение коллоидных частиц золя, полученного в избытке азотнокислого серебра, можно схематически изобразить так  [c.25]

    С указанной точки зрения молекулярно-дисперсные системы обладают неограниченной агрегативной устойчивостью. У коллоидных систем этот вид устойчивости различен в зависимости от состава золя, строения его частиц и состояния коллоидного раствора. В частности, в изоэлектрическом состоянии золя агрегативная его устойчивость минимальная. [c.305]

    Развитие количественной теории ней-трализационнОй коагуляции — актуальная задача общей проблемы устойчивости ионостабилизированных коллоидных растворов. В принципе она может решаться двумя путями. Первый — строго теоретический, основанный на учете в картине строения двойного электрического слоя размеров ионов, их поляризуемости и сольватации, дискретности зарядов, функции распределения ионов вне пределов применимости уравнения Пуассона — Больцмана. При этом одновременно должна быть развита теория адсорбции ионов и установлены связанные с ней закономерности изменения потенциала частиц. Как легко видеть, этот путь весьма сложный [c.154]

    Молекулы Agi объединяются в практически нерастворимые частицы, в которых ионы Ag+ и I- образуют кристаллическую решетку. Исследования 3. Я. Берестневой и В. А. Каргина при помощи электронного микроскопа показали, что новообразованные частицы вначале имеют аморфное строение, затем постепенно в них происходит кристаллизация. Если AgNOg и К1 взяты в эквивалентных количествах, то частицы-кристаллики растут, достигая значительной величины, превосходящей размеры коллоидных частиц, и быстро выпадают в осадок. Если же одно из исходных веществ взято в небольшом избытке, то оно служит стабилизатором, сообщающим устойчивость коллоидным частицам Agi. Так, при избытке AgNOa в растворе будет находиться большое количество ионов Ag и NO3-. Однако построение кристаллической решетки Agi согласно правилу Панета — Фаянса может идти только за счет ионов, входящих в ее состав в данном случае за счет ионов Ag+. [c.150]

    Высокая дисперсность глинистых минералов и характерное строение кристаллической решетки обусловливают присущие им специфические свойства, которые при взаимодействии глинистых частиц с раствором электролитов выражаются в гидратации глинистых частиц — набухании, в обмене катионов между частицами глины и раствором, в изменении агрегативной устойчивости глинистых частиц. Все эти явления тесно между собой связаны и взаимно обусловлены. Степень такого взаимодействия глины с водой зависит также и от множества других факторов, к числу которых можно отнести полиминеральность глин, присутствие органических веществ и различных коллоидных частиц. В значитель- [c.8]

    Как упоминалось во введении, под коалесценцией следует понимать все процессы, приводящие к непосредственному контакту взаимодействующих поверхностей. В случае эмульсий и пен установление контакта вызывает укрупнение микрообъектов. При определенных условиях в суспензиях между частицами возникают только локальные области соприкосновения, которые обусловливают образование конденсационных структур. Сходство процесса коалесценции для всех дисперсных систем независимо от их агрегатного состояния заключается в прорыве слоя, разделяющего частицы. Этот слой может состоять как из дисперсионной среды, так и из граничных фаз, адсорбированных на поверхности частиц. Вследствие того, что устойчивость к коалесценции, по-видимому, объясняется различными причинами, неодинаковыми должны быть и механизмы прорыва. Рассмотрим устойчивость к коалесценции, зависящую от сил отталкивания ионно-электростатической природы, устойчивость уль-тратонких пленок растворов ПАВ (так называемых перренов-ских черных пленок), а также строение и свойства гелеобразных слоев, образующихся на границе раздела фаз при полимолекулярной адсорбции ПАВ и макромолекул либо при адсорбции коллоидных частиц. [c.91]

    В обоих случаях ядро мицеллы (AgJ) одинаково по химическому составу и кристаллическому строению, но заряд частиа различен, так как в первом случае он обусловлен адсорбцией ионов J , а во втором—ионов Ag+, присутствующих в растворе в избытке. Вещества, адсорбция ионов которых придает заряд коллоидным частицам и тем самым сообщает соответствующему коллоидному раствору устойчивость, называются стабилизаторами. В рассмотренных выше примерах стабилизаторами являлись HjS, KJ и AgNOg. [c.207]


    Содержание азота, ртути и иодида в осадке выражается отношением 1 2 3. Однако в состав образующегося продукта могут входить и другие соединения (NH2Hg2I2, NH2HgOI и т. д.) [35— 37]. Строение образующегося вещества не установлено. При большом избытке иодида осадок заметно растворяется, поэтому всегда при приготовлении реактива Несслера обращают внимание на то, чтобы не было значительного избытка иодида калия. При очень большом избытке едкой щелочи осадок разлагается с образованием окиси ртути, она также окрашена, но менее интенсивно, чем соединение ЫН2Н521з. Поэтому концентрация щелочи должна быть одинаковой при работе как со стандартным, так и с исследуемым растворами. Соединение, образующееся по указанной выше реакции, склонно к образованию коллоидных частиц с отрицательным зарядом. Для получения равномерной и устойчивой взвеси рекомендуется вводить защитный коллоид — желатин, оптическую плотность измерять через 10 мин после добавления реактива. [c.18]

    Концентрация неионогенного стабилизатора может оказывать влияние на устойчивость растворов тиоиндигоидов. При хранении лейкорастворов, содержащих 1,5 г/л препарата ОП-10 (или без последнего), Я- акс сдвигается то в коротковолновую, то в длинноволновую область. Подобные сдвиги могут быть вызваны агрегацией или дезагрегацией частиц коллоидных растворов [154, 175]. Согласно данным Шеффера [190], замещенные Тиоиндиго красного С и другие тиоиндигоиды более сложного строения образуют полу-коллоидные растворы. [c.189]

    Наиболее полно гибкость полимерных цепей может быть реализована в очень разбавленных растворах, когда отсутствуют взаимодействия между отдельными макромолекулами. При этом конформационные превращения приводят к образованию наиболее плотно свернутых форм макромолекул — глобул. Глобулы образуются и в коллоидных системах, когда несколько молекулярных клубков ассоциируются в отдельные коллоидные частицы полимерного вещества. Типичным случаем такой системы являются натуральный и синтетические латексы, представляющие собой водные коллоидные системы с полимерными частицами глобулярного строения. Устойчивость глобул в коллоидных частицах зависит от характера межмолекулярного и рнутримолекулярного взаимодействия. Если под влиянием ван-дер-ваальсовых сил внутримолекулярного взаимодействия возникают прочные физические связи, придающие устойчивость свернутым формам макромолекул (например, в белках), глобулы оказываются весьма стабильными. Если же силы внутримолекулярного взаимодействия в полимере слабы и молекулы обладают малой гибкостью, то глобулярные структуры неустойчивы и легко разрушаются. Вообще, чем меньше гибкость полимерной цепи, тем менее вероятны свернутые формы макромолекул и тем меньше возможность образования глобул в таком полимере. Образование глобул чаще всего протекает в процессе синтеза полимера, например при эмульсионной полимеризации. [c.50]

    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дис-персоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (ко-агуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Г. Фрейндлих и Г. Кройт теорию кинетики коагуляции разработал М. Смолухов-ский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (И. Лангмюр, 1917 Ж- Рэлей, 1890 и др.). В России в этот период важные работы провел А. В. Думанский (с 1903 г., измерения [c.9]


Смотреть страницы где упоминается термин Устойчивость коллоидных растворов. Строение коллоидных частиц: [c.177]    [c.169]    [c.193]    [c.377]    [c.78]    [c.175]    [c.63]   
Смотреть главы в:

Неорганическая химия -> Устойчивость коллоидных растворов. Строение коллоидных частиц




ПОИСК





Смотрите так же термины и статьи:

Коллоидные растворы строение

Коллоидные частицы

Коллоидные частицы строение

Растворы коллоидные

Устойчивость растворов



© 2025 chem21.info Реклама на сайте