Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы исследования строения молекул

    В отличие от ИК-спектров, в которых проявляются колебания, связанные с изменением дипольных моментов молекул, в спектрах КР активны те колебания, которые сопровождаются изменением поляризуемости молекулы в поле электромагнитного светового излучения. Это приводит к тому, что оба метода дополняют друг друга в определении частот колебаний в молекулах. Из спектров. КР газообразных веществ можно получить также информацию относительно вращательного движения молекул. Комбинационное рассеяние света, так же как и ИК-спектроскопия, является эффективным методом исследования строения молекул и их взаимодействия с окружающей средой. Спектры КР специфичны для каждого соединения и могут служить как для его идентификации, так и для обнаружения в смеси с другими веществами. [c.222]


    ДРУГИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СТРОЕНИЯ МОЛЕКУЛ [c.365]

    Абсорбционная спектроскопия в ультрафиолетовой и видимой областях — первый спектральный метод, нашедший широкое применение для исследования органических соединений. Хотя в настоящее время этот вид спектроскопии уступил лидирующее положение другим физическим методам определения строения молекул, достоинства его и сейчас не вызывают сомнений, а в будущем, возможно, даже возрастут как в связи с неуклонным совершенствованием аппаратуры, расширяющим исследуемый спектральный диапазон, так и вследствие прогресса в теории спектроскопии. [c.45]

    Волновые свойства электронов, а вместе с ними идея де Бройля нашли экспериментальное подтверждение в опытах по рассеянию и дифракции электронов, проведенных в 1927 г. в США, Великобритании и СССР. В Советском Союзе блестящие опыты по дифракции электронов были проведены в Ленинградском политехническом институте проф. П. С. Тартаковским. Впоследствии опытным путем была обнаружена дифракция нейтронов, протонов, атомов гелия, молекул водорода и других микрообъектов. В настоящее время волновые свойства материальных частиц широко применяются в методах исследования строения вещества — электронографии, нейтронографии и др. [c.37]

    Физико-химический анализ — это учение о зависимости свойств сложных систем от их состава. Для двухкомпонентных систем обычно строят диаграмму плавкости (кристаллизации), на которой по оси ординат откладывают температуру, а по оси абсцисс состав в весовых или атомных процентах. В этих случаях берут два вещества и готовят смеси разного состава. Смеси расплавляют и изучают ход кривых кристаллизации расплава во времени, т. е. выполняют термографический анализ. По кривым строят диаграмму плавкости, характеризующую индивидуальность получаемых образцов твердых фаз постоянного или переменного состава. Изучение электропроводности, плотности, твердости и пр. в зависимости от состава фаз, использование металлографических, рентгенографических и других методов исследования позволяет углубить знание о числе фаз в системе и об их строении. Фазовая характеристика твердых фаз совершенно необходима, так как, по Курнакову, носителем свойств соединения в твердом состоянии является не молекула, а фаза. [c.34]

    Другие методы исследования строения молекул [c.385]

    Такое принижение химических методов исследования не ново и не оригинально. Более столетия назад Жерар утверждал, что строение молекул не может быть познано химическими методами. Этой ошибкой грешили также Кольбе, Кекуле и другие ученые. Однако если в то время такая ошибка могла быть хотя бы частично оправдана, то теперь, когда совершенно очевидны сила i-i действенность химических методов исследования строения молекул, подобная ошибка недопустима. [c.222]


    Характер химических превращений и свойства веществ зависят от строения реагирующих молекул и особенно от размеров и расположения входящих в них атомов, межъядерного расстояния и энергии химических связей, зарядов атомов и атомных группировок, моментов инерции молекул. Не всегда подобные характеристики могут быть рассчитаны теоретически. Очень часто привлекаются опытные данные, получаемые путем исследования электрических, магнитных, оптических и других свойств веществ. Знание экспериментально получаемых молекулярных характеристик важно для проверки гипотез о механизме химических процессов. Кратко остановимся лишь на принципах наиболее важных методов экспериментального исследования строения молекул.  [c.49]

    В результате этого спектр веш,ества в инфракрасной области дает сразу много сведений о наличии в веществе различных химических групп. Например, наличие атома кислорода в органическом соединении может означать присутствие в его составе спиртовой ОН, эфирной С — О — С, альдегидной, карбоксильной группы и ряда других. Чтобы установить наличие или отсутствие каждой из этих групп химическими методами, надо провести целую серию химических реакций, типичных для группы каждого типа. С помощью ИК-спектра этот вопрос решается сразу. Поэтому ИК-спектроскопия — один из важнейших физических методов исследования строения сложных молекул. [c.156]

    Ни один из перечисленных методов исследования строения полисахарида не дает исчерпывающих данных, на основании которых можно было бы установить структуру его молекул. Чаще всего результаты, полученные одним методом, дополняются данными другого метода. Поэтому при исследовании применяют несколько методов и только в этом случае получают наиболее полные и достоверные сведения о структуре полимерного соединения. [c.87]

    Таким образом, действительно, полярографические данные в основном удовлетворительно совпадают с результатами других методов исследования, что подтверждает объективность полярографических характеристик отдельных структурных фрагментов органических молекул. Следовательно, преимущества полярографии позволяют ей стать одним из информативных методов изучения строения и реакционной способности органических молекул. [c.58]

    Разработаны разнообразные методы исследования строение частиц в газовой фазе (главным образом дифракция электронов и спектроскопия). Например, используется микроволновая спектроскопия молекул, генерируемых либо непосредственным испарением твердых тел (Ag—С1 2,28 А, Ag—Вг 2,39 А) [7] либо специальными методами, если частицы в газовой фазе неустойчивы. Так, при проведении реакции галогенидов алюминия с металлом образуются моногалогениды (А1—Р 1,6544 А, А1— —С1 2,1298 А) [8]. Из других методов можно назвать ИК-спектроскопию молекул в паре или замороженных в матрицах [c.125]

    Несмотря на эти трудности, было проведено довольно много исследований с другими ядрами, кроме протонов, и получен ряд ценных и важных результатов. При дальнейшем совершенствовании теории и преодолении трудностей интерпретации этот метод может стать одним из самых мощных орудий исследования строения молекул и кристаллов. Хотя такие важные ядра, как О и 8 , немагнитны, можно исследовать ЯМР на их изотопах, так как О , О и 5 все обладают спинами. [c.356]

    Рассматриваемые ниже разновидности ядерно-физических методов радиометрия и ЯМР (ядерно-магнитный резонанс) — сложнее тем, что основаны на регистрации явлений, связанных со специфическими свойствами ядер элементов. Различие между ними состоит в том, что в первом случае необходимые сведения о концентрации интересующего нас вещества получают по изменению интенсивности или энергии частиц ядерного излучения, а во втором — определяемое вещество дает о себе знать по поведению в магнитном поле входящих в него ядер. Оба метода широко используют для исследования строения молекул, кинетики межатомных и межмолекулярных взаимодействий и т. д. Для аналитических целей, в частности для определения влажности химических веществ, указанные методы используются реже. Объясняется это, с одной стороны, особой спецификой проведения радиометрических работ, с другой — малой доступностью соответствующей аппаратуры для аналитических лабораторий. Кроме того, многие из ядерно-физических методов недостаточно специфичны по отношению к воде, а в некоторых случаях — малочувствительны. [c.177]

    Выяснение механизма различных процессов и превращений, изучение химического строения веществ, подвижности атомов и групп. Введение радиоактивной метки дает возможность непосредственно различать химически тождественные атомы и молекулы. Определение, например, соотношения скоростей прямой и обратной химической реакции, места разрыва и образования связей в сложных органических молекулах крайне затруднительно или вообще невозможно какими-либо другими методами исследования. [c.14]


    Многие другие современные экспериментальные методы исследования строения вещества — магнитные (измерение магнитной восприимчиво-( ти), оптические (вращение плоскости поляризации в электрическом и магнитных полях), метод меченых атомов (введение изотопов) — позволили установить зависимость некоторых важных свойств молекул от и.х строения. [c.26]

    Роль эксперимента как критерия истины не случайно особенно наглядно выступает в химии. Наука эта, более чем какая-либо другая, основана на опыте. Недаром говорят, что химия в известном смысле есть концентрированная практика научного исследования и производства. Но следует иметь в виду, что критерий практики, а значит, и научного эксперимента как особой формы ее, одновременно и абсолютен, и относителен. Абсолютен — ибо все, что доказано практикой, является объективной истиной. Относителен — потому что сам эксперимент определяется уровнем развития научных знаний и материального производства, т. е. носит исторический характер. Поэтому результаты эксперимента в связи с развитием его все более и более уточняются, углубляются, приближаясь к объективной истине. Так, методы определения строения молекул органических соединений во времена Бутлерова заключались в проведении характерных, типических реакций и простейшего исследования физических свойств вещества, которые, как известно, находятся в тесной зависимости от строения их молекул. В последние десятилетия в связи с высоким развитием производства вообще, а значит, и техники физического эксперимента, исследование строения осуществляется через определение дипольных моментов, с помощью рентгенографического, электронографического и спектроскопического способов. Это позволило значительно углубить представления [c.325]

    Совершенно противоположный взгляд на природу растворов электролитов принадлежит индийскому ученому Гхошу (1918— 1920). По теории Гхоша ионы в растворе располагаются в том же строгом порядке, в каком они находятся в кристаллической решетке соответствующего твердого тела. Различие заключается главным образом в том, что расстояния между двумя соседними ионами оказываются в растворе большими, чем в исходном кристалле. Процесс растворения отождествляется при этом с набуханием. Пространство между ионами заполняется молекулами растворителя, и силы взаимодействия ослабляются вследствие увеличения диэлектрической постоянной раствора и межионного расстояния. Силы взаимодействия между ионами обладают электростатической кулоновской природой. При помощи этих и других постулатов Гхошу удалось вывести формулы для расчета свободной энергии раствора, коэффициента активности, теплот разбавления и т. п. В области умеренных концентраций эти формулы находятся в качественном согласии с опытом. Однако предпосылки теории Гхоша не согласуются с современными данными о строении растворов и многие ее выводы противоречат опытным фактам. Так, например, из нее следует, что потенциальная энергия раствора лишь постольку зависит от температуры, поскольку с температурой изменяется его диэлектрическая постоянная. В действительности же, потенциальная энергия раствора зависит непосредственно от температуры. Результаты рентгеновских и других методов исследования структуры растворов не подтверждают мысли Гхоша о сохра- [c.44]

    И СВОЙСТВ молекул, а также использование термодинамики как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и приме-5" нение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    В учении о строении молекул исследуются геометрия молекул, внутримолекулярные движения и силы, связывающие атомы в молекуле. В экспериментальных исследованиях строения молекул наибольшее применение получил метод молекулярной спектроскопии (включая радиоспектроскопию), широко используются также электрические, рентгенографические, магнитные и другие методы. [c.18]

    При помощи микроволновых спектров можно очень точно определить моменты инерции многоатомных молекул. Для случая линейной молекулы с п атомами, соединенными друг с другом тг—1 ковалентными связями, знания только одного момента инерции J недостаточно для определения длин связей. Последовательным замещением атомов молекулы изотопами можно определить п—Л моментов инерции, при помощи которых можно вычислить длину всех л —1 связей. Положение еще более сложное для трехмерных молекул однако во многих случаях были найдены удовлетворительные решения. При помощи микроволновых спектров можно определить с большой точностью дипольные электрические моменты молекул и, пользуясь так называемыми сверхтонкими структурами , измерить квадрупольпые ядерные электрические моменты. Последние дают сведения, касающиеся распределения электронов в молекуле (степени гибридизации, ионного характера и кратности связей и т.д.). Микроволновые спектры, исследование которых развилось лишь в последнее время в связи с развитием техники радара, оказались ценным методом исследования строения молекул. [c.103]

    Эффект Мессбауэра наряду с другими физическими методами исследования строения молекул — ядерным магнитным резонансом, спектрофотоме-трней, электронным парамагнитным резонансом и др.— позволяет изучать электронную структуру железа и в некоторых случаях его ближайшего окружения. Благодаря широкому распространению соединений железа в живой природе этот эффект может с успехом использоваться также в биологии. [c.415]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Место ЯМР-спектроскопии среди других физических методов исследования и ее значение в химии. ЯМР-спектроскопия заняла достойное место рядом с другими физическими методами исследования, например, инфракрасной спектроскопией. Как правило, эти методы не заменяют, а взаимно дополняют друг друга. Тем не менее следует особо подчеркнуть, что ЯМР-спектроскопия может часто служить источником такой Информации о структуре химических соединений, которая другими методами получается лишь с огромным трудом или вообще была недоступна. еперь во многих случаях химик-органик, взглянув на спектр ЯМР, может быстро решить, получил ли он то, что задумал. Раньше такой вывод удавалось сделать лишь после долгих недель или месяцев кропотливой работы. Это было и остается одной из причин небывалой популярности ЯМР-спектроскопии. В настоящее время контроль за синтезом новых соединений часто осуществляется с помощью метода ЯМР. Связь химической структуры со спектрами ЯМР отли-чаетсисключительно высокими темпами, быстро получила признание и в настоящее время занимает ведущее место среди физических методов определения строения молекул. [c.6]

    Большое количество информации, получаемой экспериментальным путем с помошью новых методов исследования строения ве-шестяа (молекулярные спектры, ядерный магнитный резонанс, электронный парамагнитный резонанс, дифракция электронов и т. д.) позволяет уточнять существующие теории и расчеты. Даже в простых молекулах, построенных за счет ковалентной неполярной связи, иногда получается несовпадение теории с экспериментом. Примером может служить молекула О2 (см. табл. 3.2), для объяснения парамагнетизма которой приходится допустить или наличие трехэлектронной связи за счет взаимодействия электронов неподеленных электронных пар, или миграцию электронов с одной р-орбиталн на другую, так чтобы в каждый момент в молекуле кислорода имелись непарные электроны, создающие магнитный момент. [c.86]

    Осуществленное А. Н. Фрумкиным с сотрудниками измерение скачка потенциала в адсорбционном слое в сочетании с другими методами исследования позволило выяснить характер расположения молекул на поверхности, а также закономерности взаимодействия между ионами двойного слоя и диполями адсорбированных органических молекул. М. А. Проскурнин, Б. В. Эрщлер, Б. Б. Дамаскин и др. детально рассмотрели и усовер-щенствовали методику измерения емкости двойного электрического слоя на границе металл — раствор, в результате чего удалось опытным путем определить абсолютное значение емкости и подтвердить теорию диффузионного строения двойного слоя. Эти исследования выяснили причины перезарядки коллоидов и привели к новому методу определения потенциалов нулевого заряда металлов. [c.10]

    Строение атомов, имеющих на своих энергетических уровнях несколько электронов, весьма сложно и его нельзя точно математически рассчитать,как это осуществимо для атома водорода и водородообразных структур типа Не" и Однако можно с достаточной степенью точности оценить строение атомов элементов, пользуясь в первую очередь периодической системой элементов Д. И. Менделеева, законом Мозли, а также используя теорию строения атома водорода. Критерием правильности наших суждений является обширный материал спектральных исследований, а также других методов исследования внутреннего строения атомов и молекул. [c.44]

    С любой частицей, движущейся с импульсом mv, ассоциируется длина волны де Бройля К = h/mv, и луч таких частиц может дать в определенных условиях дифракционную картину. Монохроматические лучи электронов в основном используются для исследования строения молекул в газообразном состоянии хотя в последние годы их также применяют для изучения внешней и внутренней структуры кристаллов. В то время как рентгеновские лучи и электроны взаимодействуют с орбитальными электронами атомов, с которыми они сталкиваются, нейтроны рассеиваются атомными ядрами. Дифракция нейтронов особенно ценна тем, что она является методом определения положения ядер водорода в молекулах. В этом заключается отличительная особенность дифракции нейтронов по сравнению с дифракцией рентгеновских лучей в последнем случае рассеяние постепенно увеличивается с ростом числа орбитальных электронов в рассеивающем атоме. Другим преимуществом дифракции нейтронов по сравнению с дифракцией рентгеновских лучей является то, что дифракция нейгронов позволяет легко различить два химически разных атома, имеющих почти одинаковое число электронов с помощью рентгеновского метода этого сделать нельзя. Например, для шпинели MgAl204 было показано, что атомы магния занимают в кристалле тетраэдрические положения, а атомы алюминия— октаэдрические. [c.187]


Смотреть страницы где упоминается термин Другие методы исследования строения молекул: [c.377]    [c.6]    [c.127]    [c.194]    [c.44]    [c.251]    [c.596]    [c.759]    [c.508]    [c.252]    [c.45]    [c.194]   
Смотреть главы в:

Химическая связь и строение -> Другие методы исследования строения молекул




ПОИСК





Смотрите так же термины и статьи:

Другие исследования молекул ДНК

Другие методы

Метод Молекулы

Молекула строение



© 2025 chem21.info Реклама на сайте