Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение капель жидкости в газовом потоке

    При математическом описании процесса приняты некоторые допущения. В качестве испаряющейся жидкости принята вода, не содержащая примесей. Рассматривается движение изолированной (одиночной) капли, начальная скорость которой принимается равной скорости истечения воды из форсунок. На основе литературных данных [37 94] принято, что при распыливании жидкостей механическими центробежными форсунками коалесценция капель отсутствует. Поля скоростей несущего газового потока в циклонном реакторе принимаются осесимметричными, что наблюдается и в действительности в циклонных реакторах с двусторонним и многосторонним подводом топливовоздушной смеси. Температура газового потока усредняется по всему объему зоны испарения. Турбулентные пульсации в потоке не оказывают влияния на траектории движения капель. Испаряющиеся капли воды не влияют на характер движения газовой среды. Лучистый теплообмен при нагреве и испарении капель не учитывается. С учетом указанных допущений исследуемый процесс описывается следующей системой уравнений. [c.41]


    При движении капель в потоке в результате теплоотвода из зоны горения температура поверхности и жидкого ядра капель непрерывно повышается. Предполагается, что когда температура капли топлива достигнет температуры кипения жидкости, давление насыщенного пара на поверхности капли делается больше внешнего Давления. При таких условиях скорость диффузии паров топлива в окружающую среду (воздух) достигает очень большой величины. В этом случае скорость испарения капель в газовом потоке [c.95]

    В работе приведены модель и результаты численного анализа процесса испарения капель жидкости с последующей химической реакцией паров в высокотемпературном газовом потоке. Математическое описание процесса, базирующееся на основных положениях механики гетерогенных сред, включает в себя уравнения сохранения массы, импульса, энергии как непрерывной фазы, так и дискретной, причем дискретная фаза (капли жидкости) представлена распределением капель по размерам и числу. [c.167]

    Известно, что движение капель распыленной жидкости в вихревом высокотемпературном газовом потоке в сушильных аппаратах сопровождается изменением их размеров во времени и пространстве. При этом наибольший интерес представляет начальный участок движения капли в зоне наиболее активного воздействия потока газа, где происходят, как правило, сепарация и интенсивное испарение капель. [c.176]

    Когда в газовый поток добавляют капли жидкости, вследствие заметного нагрева двухфазной смеси, испарения жидкости и разрушения пограничного слоя возрастает перенос теплоты. В 45] показано, что, если на нагреваемой поверхности образуется непрерывная пленка жидкости, коэффициенты теплоотдачи могут вырасти в 30 раз. Более практичный способ интенсификации теплообмена предложен в [46], где применяется охлаждение разбрызгиванием в центральной зоне компактного теплообменника. Увеличение коэффициентов теплоотдачи максимально иа 40% связано с образованием жидкой пленкн и ощутимым ее нагревом. Вообще же большие требуемые объемы жидкости приводят к ограничениям в практическом применении этого метода. [c.326]

    Испарение капель является очень сложным процессом и строгое решение задачи представляет большие трудности. Согласно методу приведенной пленки, можно применить фиктивный пограничный слой, в котором осуществляется полное изменение температуры и концентрации паров жидкости от значений на поверхности капли до значений в газовом потоке. Толщина приведенной пленки может быть определена по следующему выражению [94]  [c.46]


    В зависимости от размера капель струи бывают капельные (диаметр капель>0,4 мм), распыленные (диаметр капель 0,2— 0,4 мм) и мелкораспыленные (туманообразные, диаметр капель <0,2 мм). Чем меньше диаметр капель, образованных распылителем, тем выше их охлаждающая способность за счет увеличения суммарной площади испарения при одном и том же расходе огнетушащей жидкости. Однако с уменьшением размера капель снижается их проникающая способность в очаг пожара, так как капли могут уноситься напором газового потока. Оптимальную дисперсность струй определяют расчетом или опытным путем. [c.78]

    Тепловая производительность контактных аппаратов определяется поверхностью соприкосновения теплоносителей. Поэтому в конструкции аппарата предусматривается разделение потока жидкости на мелкие капли, струи, пленки или газового потока на мелкие пузырьки. Передача теплоты в них происходит не только путем кондуктивной теплопередачи, но и путем обмена массой, причем путем массопередачи возможен даже переход теплоты от холодного теплоносителя к горячему. Например, при испарении холодной воды в горячем газе теплота испарения переносится от жидкости к газу. [c.118]

    Если дисперсность и плотность потока распыленной воды оказываются недостаточными для быстрого прекращения горения, и горение в начале только сильно ослабляется, то при понижении скорости выгорания и температуры газовой фазы увеличивается число капель, попадающих в жидкость, и температура их становится ниже начальной температуры. Это понижает температуру на поверхности жидкости и скорость испарения. Уменьшение скорости выгорания понижает температуру падающих капель воды. Капли понижают температуру и горючей жидкости и т. д. В некоторых областях пламя гаснет, а продолжающаяся подача воды ведет к дальнейшему охлаждению жидкости, и пламя гаснет на свободной поверхности. [c.204]

    На основе выводов Лейбензо-на [195] по испарению капли в газовом потоке Равдель [191] рассматривает кинетику растворения пузырьков газа, поднимающихся в жидкости в широком диапазоне чисел Рейнольдса. Для области малых (Ке < 1) найдено соотношение  [c.100]

    Весьма интересно поведение аэрозолей, содержащих частицы жидкости с высоким давлением пара. Частицы таких аэрозолей могут упруго отскакивать друг от друга при столкновениях. Причина этого, как установили Б. В. Дерягин и П. С. Прохоров, заключается в испарении жидкости с поверхности капелек и образовании вследствие этого диффузноконвекционного газового потока, препятствующего коалесценции капель. Расчеты. подтвердили, что давление пара, возникающее в результате такого испарения, вполне достаточно, чтобы неограниченно долго препятствовать слиянию двух капелек жидкости, находящихся в непосредственной близости (при условии по- полнения испаряющейся жидкости) Интересно, что если предотвратить испарение, например путем насыщения окружающего воздуха парами той же жидкости, то капли тотчас коалесцируют. Повыщения агрегативной устойчивости эмульсий и суспензий вследствие растворения дисперсной фазы в дисперсионной среде никогда не наблюдается очевидно, это можно объяснить тем, что диффузия в жидкой среде протекает с очень малой скоростью. [c.349]

    В большинстве случаев теоретическое определение коэффициентов массоотдачи проводят, рассматривая процесс массопереноса для каждой фазы в отдельности вне частицы (внешняя задача) или внутри частицы (внутренняя задача). Фактически это означает, что при решении задачи не учитывается влияние массопереноса в одной фазе на скорость массопереноса в др)той. Очень часто такая постановка вполне допустима. Во многих практических задачах перенос массы в одной из фаз либо вовсе отсутствует (растворение твердой частицы или пузырька однокомпонентного газа (пара) в жидкости, испарение капли однокомпонентной жидкости в газовом потоке и т. п.), либо скорость его значительно выше, чем во второй фазе. В последнем случае говорят, что процесс массопередачи лимитируется сопротивлением второй фазы. Так, при абсорбции хорошо растворимых газов и паров (NH3, НС1, HF, SO2, SO3, этанол, ацетон и др.) из газовой смеси водой в барботажных аппаратах скорость массопередачи лимитируется скоростью диффузии этих газов в пузырьках. Наоборот, процесс массопередачи при водной абсорбции плохо растворимых газов (О2, СО2, NO, N2O) лимитируется сопротивлением водной фазы. В обоих указанных случаях концентрацию переносимого компонента на межфазной поверхности со стороны г-й фазы можно считать известной и равной концентрации, находящейся в равновесии с постоянной концентрацией компонента во второй фазе. Таким образом, для решения уравнения (5.3.1.1) можно использовать граничное условие 1-го рода (см. подраздел 5.2.2). Это существенно упрощает решение задачи. В экспериментах определяют обычно не коэффициенты массоотдачи , (см. уравнение (5.2.4.1)), а коэффициенты массопередачи К(, определяемые уравнениями (S.2.6.2.). Однако проводить эксперимент стараются таким образом, чтобы массоперенос во второй фазе либо отсутствовал, либо протекал значительно быстрее, чем в первой фазе. Тогда коэффициент массоотдачи в первой фазе будет равен экспериментально определенному коэффициенту массопере- [c.274]


    Часть мелкодисперсной жидкости не успевает покинуть приосевой поток и выходит из кам,еры разделения через диафрагму вместе с охлажденным потоком. Остальные капли попадают в периферийный газовый поток, где частично или полностью испаряются. Это приводит к снижению температуры периферийного газового потока, а следовательно, и температуры потока, вытекающего из камеры разделения через дроссель. Неис-парившаяся в периферийном потоке часть капель жидкости может либо достичь поверхности пленки или стенки камеры, либо вернуться в приосевой газовый поток вблизи дросселя, где центробежные силы малы из-за низких значений тангенциальной составляющей скорости движения потока. Таким образом, наличие капель жидкости в газовых потоках вызывает перенос теплоты от периферийных слоев вихря к приосевым. Суть этого процесса заключается в стекании паров высококипящих компонентов из периферийных слоев в приосевые, их конденсации в приосевых слоях, возвращении и испарении конденсата в периферийных слоях. [c.130]

    Однако в общем случае распределение топлива должно в значительной степени определяться передвижением капелек топлива под влиянием начальной скорости при вылете из форсунки и взаимодействием частиц топлива с газовым потоком. При полете капли происходит испарение жидкости. Пары могут частично сгореть в пограничном слое капельки частично они переносятся в поток и лишь затем сгорают. Перемещение капель топлива в пространстве камеры является, по-вндпмому, существенным фактором, влияющим на распределение топлива по сечению и длине камеры горения. [c.261]

    В очень большом числе сообщений приводятся результаты измерения скорости массообмена между отдельной сферической частицей и потоком жидкости. С этой целью используют методики с сублимацией твердого вещества, с испарением жидкости в газ и с растворением твердого вещества или жидкости в жидкости. По-видимому, отсутствуют публикации исследований, посвященных изучению абсорбции газа единичными сферическими частицами в условиях, когда процесс лимитируется сопротивлением в газовой фазе. Подавляющая часть данных относится к испарению капель чистых жидкостей, поскольку экспериментальная методика проста, и небольшие капли (или капли большего размера с поверхностно-активным веществом) ведут себя как жесткие сферические частицы. Кроме того, значительный объем информации по теплоотдаче к сферическим частицам может быть в общем случае распространен на массоотдачу путем замены числа Нуссельта на k dJD и числа Рг на число S . [c.247]


Смотреть страницы где упоминается термин Испарение капель жидкости в газовом потоке: [c.349]    [c.252]    [c.74]   
Смотреть главы в:

Диффузия и теплопередача в химической кинетике Издание 2 -> Испарение капель жидкости в газовом потоке




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте