Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капли скорость движения

    Оказавшись под действием определенной силы, капля сначала движется ускоренно, так как действующая на нее сила превьппает тормозящую силу трения. По мере повышения скорости движения сила трения все больше увеличивается, и при определенной скорости обе сипы уравновешиваются движение капли становится равномерным. Принимая в первом приближении, что капля имеет сферическую форму, воспользуемся известной формулой Стокса. Согласно этой формуле, установившаяся под действием силы Р и вязкости жидкой среды г равномерная скорость движения и сферической капли радиусом г равна [c.33]


    Капли образуются в отверстиях распределителя, по которому жидкость подается в колонну. Скорость движения капелек диспергированной жидкости относительно стенок колонны зависит от вязкости, разности плотностей [уравнение (4-2)], а также от линейной скорости сплошной фазы. Чтобы получить возможно большую поверхность контакта фаз, в колоннах этого типа следует применять максимальные скорости потока сплошной фазы, так как при этом действительная скорость капелек Шд уменьшается [см. уравнение (4-9)] и вследствие повышенной удерживающей способности улучшается массообмен. Скорость фаз ограничивается пределом захлебывания [16, 32, 136]. Одной из зависимостей для скоростей потоков на границе захлебывания является уравнение [42]  [c.311]

    Здесы/оо - скорость движения капли. [c.192]

    Брызгоунос. Брызгоунос складывается из двух составляющих. Одна образована мелкими каплями, скорость витания которых меньше скорости газа. Для определения скорости витания можно использовать формулы (1.28) и (1.29). Вторая (обычно основная) составляющая уноса — это крупные капли, получившие значительную кинетическую энергию при их образовании. Величина брызгоуноса зависит от вида контактного устройства, скорости движения фаз, физико-химических свойств газа (пара) и жидкости и других факторов и определяется по эмпирическим уравнениям. [c.19]

    Рассмотрим отстойник с нижним вводом сырья, поступающего под слой дренажной воды схема торцевого сечения отстойника изображена на рис. 7.7. Пусть в процессе работы отстойника образовался промежуточный слой, верхняя граница которого на величину (Я — к) выще среднего сечения аппарата. В промежуточном слое реализуются стесненные условия движения эмульгированных капель. Если не учитывать возможные витания капель на верхней границе слоя, то выще этой границы будут попадать только капли, скорость осаждения которых меньше скорости сплошной фазы. Эти капли захватываются потоком нефти и выносятся из аппарата. Так как промышленные отстойники рассчитываются на работу с малым остаточным содержанием воды в товарной продукции, то можно считать, что скорость оседания капель в верхней зоне аппарата подчиняется закону Стокса. Скорость потока сплошной фазы в этой области определяется равенством [c.135]


    Решением системы дифференциальных уравнений найдены радиальные и тангенциальные компоненты скорости движения испаряющихся капель и их радиаль юго перемещения при известных внешних условиях скорость воздуха (газа) на входе камеры Овх, начальный диаметр капли dкo параметры газа-п-плоносителя (гемпература ( , плотность Рв, теплопроводность вязкость и жидкости (теплота испарения г, плотность р , температура поверхности С ). Дополнительным условием при решении системы уравнений была зависимость = 1( ), полученная при а.зродинамических исследованиях. Эта зависимость имеет вид  [c.178]

    Однако численные оценки показывают, что при больших значе- жях е и достаточно крупных каплях скорости движения капли /7, определяемые по формуле (99.21), настолько велики, что число [c.503]

    Разрушая поверхностную адсорбционную пленку, деэмульгаторы способствуют слиянию (коалесценции) капелек воды в более крупные капли, которые при отстое эмульсии отделяются быстрее. Этот процесс ускоряется при повышенных температурах (обычно 80—120 °С), так как при этом размягчается адсорбционная пленка и повышается ее растворимость в нефти, увеличивается скорость движения капелек и снижается вязкость нефти, т. е. улучшаются условия для слияния и оседания капель. Следует отметить, что при температурах более 120 °С вязкость нефти меняется мало, поэтому эффект действия деэмульгаторов увеличивается незначительно. [c.9]

    Температура Тя зависит от параметров испаряющейся жидкости (фракционного состава, температуры кипения, давления насыщенных паров) и давлення и температуры окружающей среды, но мало зависит от относительной скорости движения и диаметра капли. Для определения Тя могут быть использованы соответствующие зависимости, предлагаемые в работах [126, 133]. При высвкнх температурах окружающей среды (например, в дизелях и ВРД) можно принимать Тя равной температуре кипения Т,. Прн определении Тя в условиях поршневых ДВС тепло лучеиспускания обычно ие учитывается, его доля составляет менее 1,5% [126]. Следует отметить, что при Гв<Г, испарение близко к изотермическому и лимитируется диффузней паров при Тя>Т, испарение лимитируется теплообменом. В процессе испарения капли ее диаметр постоянно уменьшается, однако, по данным [134], если рт>С< (где С. — концентрация паров у поверхности капли), испарение можно считать квазистационарным и можно рассчитывать его скорость по формулам, приведенным в работе [135] [c.109]

    Влияние размеров насадки на массообмен представляет собою равнодействующую ее влияния на диаметр капли и скорость ее движения. Эти величины определяют удерживающую способность и поверхность контакта [уравнение (4-9)]. Скорость движения жидкости равномерно уменьшается с сокращением размеров насадки, например диаметра колец Рашига, и оказывается наименьшей для насадки наименьших размеров. Это влияние обычно сильнее сказывается на скорости движения, чем на диаметре капель, и поэтому, если размеры насадок ниже критических, поверхность контакта фаз наибольшая и массообмен идет быстрее всего, несмотря на увеличение диаметра капель. Такая зависимость установлена для колец Рашига и [c.327]

    Основное влияние на гидродинамический режим процесса отстоя в дегидраторе оказывает тип ввода сырья. В гл. 6 было показано, что в настоящее время в отстойниках используют вводы трех основных типов нижний, торцевой и через распределительные головки. Наиболее просто определить ПФ для отстойника с вводом сырья через распределительное устройство, расположенное в нижней части аппарата, и отбором сырья из верхней части аппарата (см. рис. 2.5, с. 29). В этом случае капли будут двигаться против потока нефти. Поэтому абсолютная скорость осаждения капли объемом V сложится из скорости движения сплошной фазы к , направленной вверх, и скорости осаждения капли (У), направленной вниз. Если в отстойной части аппарата соблюдается ламинарный режим движения жидкости, то все капли, для которых скорость сплошной фазы больше скорости их осаждения, не осядут и останутся в товарной нефти. Поэтому будет справедливо равенство  [c.127]

    Здесь с (I, X, V) — частичная функция плотности распределения капель дисперсной фазы по объемам и t, х, и) — скорость движения капель объемом и- I — время х — вертикальная координата V —объем капли. [c.295]

    Скорость движения капельки воды в нефтяной среде, возникающая в результате взаимодействия постоянного электрического поля и двойного электрического слоя, окружающего каплю, определяется формулой Гюккеля - Смолуховского [121 [c.51]

    На скорость движения заряженной капельки оказывает влияние степень солености воды, из которой образована капелька. С повышением концентрации солей скорость движения капли увеличивается [48-51]. [c.52]

    Последний виток спирали переходит в держатель, длина которого несколько больше длины цилиндра. Спираль должна хорошо прилегать ко дну цилиндра и находиться с самого начала опыта в растворе эмульгатора, что является необходимым условием успешной работы и легко выполнимо, так как эластичная проволока может быть изогнута по форме дна цилиндра. Эмульгируемую жидкость из бюретки выпускают каплями с определенной скоростью так, чтобы она стекала по стенкам цилиндра при одновременном плавном и непрерывном движении спирали по оси цилиндра. Скорость движения спирали должна находиться в соответствии со скоростью подачи эмульгируемой жидкости из бюретки таким образом, чтобы последняя успевала непрерывно диспергироваться и не накапливалась значительными объемами на поверхности эмульсии. При дости- [c.163]


    Относительная скорость движения капли может быть найдена как скорость осаждения по уравнениям (2-22), (2-23) или (2-24) в зависимости от режима движения. [c.373]

    Использование капель диаметром 0,14 мм позволяет применять несложную оптическую аппаратуру и упрощать методику проведения эксперимента в полях высокой напряженности. В момент измерения скорости движения в камере должна находиться одна капля,вносимая шприцем. Расстояние, проходимое каплей, контролируют катетометром с точностью до 0,002 мм. [c.22]

    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]

    Впрыснутая в камеру сгорания струя топлива неоднородна по своему составу. Она состоит из множества разных по величине капелек, обладающих вследствие этого разными скоростями движения. В центре струи и головной ее части (как правило) располагаются капли с большим диаметром. По мере удаления от центра струи диаметр капель топлива уменьшается (фиг. 21). [c.46]

    Это уравнение показывает, что время, необходимое для образования соответствующей смеси топлива с воздухом, прямо пропорционально величине капли и обратно пропорционально относительной скорости движения капли и воздуха [16]. Для того чтобы быстро получить однородную рабочую смесь, скорость движения и испарения топлива должна быть максимально высокой. В этих условиях чрезвычайно больщое значение имеет турбулентность движения. [c.119]

    С повышением скорости движения пара увеличиваются подъемная скорость и унос жидкости. Чем меньше диаметр капли, больше скорость и удельный вес пара, тем больше высота подъема капли за счет воздействия парового потока. Когда скорость движения пара больше скорости витания капли, последняя поднимается и уносится паром при любой высоте парового пространства. [c.227]

    Скорость движения капель в электрическом поле в нефтепродукте определяется из равенства силы, действующей в электрическом поле на каплю, и силы сопротивления среды движению капли. [c.6]

    Коэффициент сопротивления круто возрастает с увеличением Ре, а скорость движения падает с увеличением размера частиц. Практически все исследователи, изучавшие движение как капель, так и пузырей, отмечают, что резкое увеличение коэффициента сопротивления связано с началом заметной деформации капель и пузырей и резко выраженными колебаниями их формы. При дальнейшем увеличении размера частиц, а следовательно, и критерия Рейнольдса деформация частиц становится все более значительной, а колебания приобретают беспорядочный характер. В этой области кривая С=С(Ке) имеет почти постоянный наклон, а предельная скорость движения капель становится практически независящей от диаметра частиц. Такое поведение наблюдается до тех пор, пока капли не достигнут своего предельного размера и не распадутся на более мелкие. Поведение пузырей несколько отличается в этой области от поведения капель, но и у них можно вьаделить некоторый интервал изменения эквивалентного диаметра, в котором скорость изменяется очень слабо. При дальнейшем увеличении размера пузырей скорость подъема несколько возрастает. Они приобретают форму, напоминающую шляпку гриба или сферический колпачок, и начинают двигаться по прямолинейным траекториям. Коэффициент сопротивления при этом принимает постоянное значение. [c.39]

    В вертикальных гравитационных сепараторах необходимо, чтобы средняя скорость движения газового потока была меньше скорости осаждения капли расчетного диаметра во встречном потоке газа Ус,, < V. Обычно расчетную скорость газового потока принимают равной 0,7,,,0.8 -скорости осаждения капель при расчетном диаметре, т.е. [c.69]

    Следует упомянуть о работах А. И. Фрумкина, определявшего электрофоретическую подвижность капель ртути. А. И. Фрумкин показал, что капля ртути полностью поляризована, так что ее поведение подобно поведению непроводника. Однако поляризация изменяет поверхностное натяжение на полюсах капли, вызывая движение ртути вдоль поверхности капли. Если капля заряжена положительно (обычный случай), то заряд на поверхности капли у полюса, обращенного к положительному электроду, уменьшается и поверхностное натяжение в этом месте возрастает, тогда как на другом полюсе капли происходит обратное явление. В результате разницы в поверхностных натяжениях внутри капли возникает движение ртути, что схематически представлено на рис. УП,23. Стрелки внутри капли показывают движение ртути, стрелки снаружи капли — направление движения дисперсионной среды. Большая стрелка внизу рисунка обозначает направление движения всей капли. Не трудно понять, что это движение ртути должно ускорять перенос частицы к отрицательному электроду. Такие круговые движения могут увеличивать скорость переноса капли на несколько порядков по сравнению с обычными скоростями электрофореза. [c.206]

    В гл. 6 были рассмотрены законы движения твердых тел в жидкостях (включая капельные и упругие) и получены формулы для расчета скорости свободного осаждения частиц под действием силы тяжести. Эти же формулы могут применяться при расчете скорости осаждения мелких капель в газе. При осаждении капель жидкости в жидкой среде благодаря внутренней циркуляции в капле скорость движения капли может быть на 50% выше, чем скорость твердой сферической частицы эквивалентного диаметра. При загрязнении капель примесями или в присутствии поверхностно-активных веществ тенденция к циркуляции сильно снижается скорость осаждения таких капель, называемых жесткими , следует рассчитать по уравнениям, полученным для твердых частиц. В случае чистых капель скорость осаждения возрастает с увеличением размера капли только до определенного (критического) значения их эквивалентного диаметра (размер капель d выражается как диаметр сферы, объем которой равновелик объему капли). Капли с / > / р в процессе осаждения периодически меняют свою форму и называются поэтому осциллирующими. Скорость осаждения осциллирующих капель с увеличением их размера немного уменьшается. [c.211]

    Величина диффузионного тока зависит от средних за время жизни капли скоростей движения поверхности радиальнойV,. и тангенциальной Г,. Зависимость эта выражается (как показано в Дополнениях , стр. 617) для радиальной скорости формулой [c.126]

    Ре.= URID > 1), в случае движения капель и пузырей (i/ — скорость движения центра тяжести —радиус капли или иузыря показывает [11, 12], что пё-риод проницания равен ио порядку величины Трел 2/ /i/, т. е. времени контакта (по Хигби T = 2RIU). Иными словами, хотя время контакта и мало, но период праницания не больше. Таким образом, основное допущение теории Хигби в этом случае не выполняется. В дальнейшем оказалось, что предположение о нестационарности, лежащее в основе модели Хигби, отражает некоторые стороны гидродинамики течения в вязком подслое развитого турбулентного пограничного слоя. Однако реальная нестационарность имеет совсем иную природу и П0 имеет ничего общего с предположениями Хигби. [c.171]

    Для капли, движущейся с постоянной скоростью относитель-IIO среды, также справедливо выражение (3.26), однако величина Nut при этом будет зависеть от скорости движения и размеров капли. Для капли, движущейся с переменной скоростью, iTO характерно, в частности, для дизелей, коэффициент теплоотдачи а меняется в процессе движения, и решить задачу с помощью уравнения теплового баланса (3.26) довольно сложно. Различные варианты решения указанной задачи при тех или Щ1ЫХ ограничениях даны в работах [131, 132]. [c.108]

    Испарение летящей капли происходит с изменением ее размеров и скорости движения. Возможный вариант решения такой задачи приведен в работе [131] на основе данных Д. Н. Вырубова [132] [c.110]

    На частицу дпсперсной фазы, движущуюся в среде сплошной фазы, действуют одновременно архимедова сила, сопротивление жидкости и поверхностные силы. Суммарное воздействие этих сил приводит к тому, что завпспмость скорости диспергированной частицы от ее объема в общем случае носит экстремальный характер. Лишь сравнительно мелкпе частицы дисперсной фазы [32] имеют сферическую форму. На практике всегда приходится иметь дело с каплями и пузырями, которые пмеют ярко выраженную эллиптическую или вообще неправильную форму [32]. На движение крупных частиц дисперсной фазы оказывает также влияние воз-никновепие в них циркуляционных токов, колебание и вращение частнц [65]. Прп этом экспериментальные зависимости скорости движения частпц дисперсной фазы от физических параметров системы часто не удается линеаризовать обычными методами [65, 66 . [c.296]

    Ео1И зависимость (1.115) известна, предельную скорость движения капли или пузыря в жидкости можно получить, используя уравнение баланса силы тяжести с поправкой Архимеда и силы сопротивления, которое дает  [c.40]

    Установлено, что слишком большие скорости движения жидкостей приводят к ухудшению массообмена, поэтому во многих случаях может оказаться выгодным увеличение скорости только одной фазы. При увеличении количества диспергированной фазы размеры капель и скорость их отстаивания остаются вначале без изменений, количество же капель в колонне возрастает, следовательно увеличивается поверхность контакта и улучшается объемный массообмен. Если количество диспергированной фазы превышает некоторый предел, массообмен ухудшается. Это происходит в связи с тем, что при больших нагрузках и слишком больших скоростях истечения из отверстий распылителя капли имеют неодинаковые размеры и, соответственно, разную скорость, в результате чего часто сталкиваются и сливаются (т. е. уменьшается поверхность контакта). Если истечение жидкости из распылителя происходит нормально, то увеличение количества диспергированной фазы приводит в конце концов к захлебыванию колонны. Влияние количества диспергированной фазы тем заметнее, чем меньше диаметры отверстий для истечения. Подобные зависимости существуют и для сплошной фазы. При увеличении количества последней уменьшается скорость отстаива- / ния капель, увеличивается удерживающая способность, в этих условиях массообмен улучшается. При больших количествах сплошной фазы мелкие капли могут слиться в крупные, которые отстаиваются скорее, что уменьшает удерживающую способность и поверхность контакта и снижает коэффициенты массопередачи. [c.309]

    В качестве условий отрыва использовались два эмпирических условия. Первое в момент отрьша скорость движения центра капли равна половине скорости истечения из отверстия (/2 иуу). Уравнение для скорости центра капли, полученное в работе [77], имеет вид  [c.57]

    В работе [377] был рассмотрен метод расчета абсорбции газа в полом скруббере, учитьшающий дисперсность распыла орошающей жидкости. При этом не учитьшалась коагуляция капель, их осаждение на стенки аппарата. Предполагалось, что капли движутся вертикально с установившейся постоянной скоростью, зависящей от диаметра капли, и что растворимость абсорбируемого газа подчиняется закону Генри. Методика расчета позволяла учесть и различия в скоростях движения отдельных фракций, и долю каждой фракции в распыле. [c.252]

    Первый и второй интегралы в правой части уравнения (7.83) характеризуют соответственно прибыль капель объемом V за счет коалесценции более мелких капель и их убыль вследствие коалесценции капель объемом и с другими каплями. Для определения горизонтальной составляющей скорости движения дисперсной фазы будем рассматривать горизонтальное течение двухфазной смеси как квазигомогенное. Такое допущение справедливо, когда частицы имеют малый размер и отношение вязкостей невелико. Тогда для ламинарного горизонтального потока квазигомогенной смеси по де-кантатору можно использовать решение уравнения Навье—Стокса для ламинарного течения жидкости в открытом канале прямоугозн — ного. сечения при свойствах жидкости, вычисленных через свойства фаз. В этом случае профиль горизонтальной составляющей скорости Ых (г) но высоте канала будет определяться ь/2 [c.301]

    Скорость движения бензольной капли диаметром 2,8 - 10 м в воде, рас-считаная по рис. 1.8, равна и=0,075 м/с. Критерий Рейнольдса Ке=210, критерий Пекле Ре=мг//0, =2 06- 10 . [c.276]

    Рассмотрим взаимодействие потока горячего газа в цилиндрическом ц коническом каналах с дискретной фазой (каплями жидкости), которая вводится в снутный несущий поток газа (рис. 1). При вводе струп жидкости в результате распыливания образуется снектр капель, и по мере движения в потоке происходит пх распределение по скоростям движения, разогрев и испарение. Предполагается, что капли имеют сферическую форму, а поток газа равномерно распределен по сечению канала и квазнстационареи по процессам переноса тепла, вещества и нмпульса. [c.66]

    При показанном на рис. 4-5 ходе прямых увеличение скорости движения диспергированной фазы Цд при постоянной скорости движения сплошной фазы (и, =сопз1, 1/ =соп51) вызывает уменьшение Лос и увеличение в некоторой степени объемного коэффициента /СсО. Если увеличить скорость сплошной фазы (при ид=соп51), то увеличится по всем прямым, коэффициенты же Кса прямых 2, 3 и 4 увеличатся, а прямой 1 слегка уменьшатся (и<—1). Эти явления объясняются изменением удерживающей способности и поверхности контакта фаз. Обе эти величины возрастают, если повышать количество диспергированной и сплошной фазы. Только при наибольших каплях (прямая /) скорость движения сплошной фазы заметно не влияет на скорость осаждения капель, но может вызывать их слияние. [c.318]

    При перегрузке аппарата по сплошной фазе может наступить такой момент, когда абсолютная скорость движения капель ТУд будет равна нулю. При такой подаче сплошной фазы в экстракторе будет накапливаться дисперсная фаза, затопляя экстрактор. Накопление дисперсной фазы в рабочей зоне экстрактора вызывает сужение прохода сплошной фазы. Скорость последней значительно увеличивается, в результате чего поток сплошной фазы начпнает выносить из рабочей зоны капли дисперсной фазы. Нарушается противоточное движение фаз, наступает захлебывание экстрактора. [c.373]

    В межтарельчатое сепарационное пространство вместе с потоком паров попадают капли жидкости различных размеров. Крупные капли, вследствие того что скорость паров в межтарельчатом пространстве меньше их скорости витания, как правило, под действием силы тяжести вновь возвращаются в слой жидкости. Мелкие капли, скорость витания которых меньше скорости движения паров в межтарельчатом пространстве, а также часть крупных капель, получивших большую начальную скорость, транспортируются потоком паров на вышележащую тарелку, что и приводит к их уносу. Концентрация капель жидкости в межтарельчатом пространстве убывает в направлении движения паров. Поверхность контакта фаз в сепа-рационном пространстве барботажных тарелок в основном определяется поверхностью капель жидкости, вклад которой в массообмен незначителен. [c.230]

    При карбюраторном способе капли бензина в карбюраторе испаряются не полностью и оседают в виде пленки на стенках впускного трубопровода. Но посколыдг скорости движения паров и пленки различны, то в разные цилиндры поступает неодинаковая по оггановому числу смесь. Поэтому карбюраторный метод требует использовать бензин с высокой испаряемостью. [c.75]

    Эмульгируемую жидкость (керосин) подают в цилиндр каплями из бюретки так, чтобы она стекала по стенкам цилиндра. Одновременно спираль приводят в плавное и непрерывное движение вдоль оси цилиндра. Скорость движения спирали должна находиться в соответствии со скоростью подачи керосина с тем, чтобы он усиевал непрерывно диспергироваться и не накапливался над поверхностью эмульсии. Когда дисперсная фаза достигнет объема У ф=10 мл, подачу керосина и -1 бюретки и движение спирали прекращают. Полученную эмульсию подвергают дисперсионному анализу под микроскопом. [c.89]


Смотреть страницы где упоминается термин Капли скорость движения: [c.96]    [c.44]    [c.53]    [c.81]    [c.179]    [c.197]    [c.61]   
Псевдоожижение твёрдых частиц (1965) -- [ c.43 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2024 chem21.info Реклама на сайте