Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость влияние начальной активности

Рис. 2-17. Влияние начальной активности адсорбента а на скорость десорбции этанола (/), ацетона (//) н метилэтилкетона (///). Рис. 2-17. Влияние начальной активности адсорбента а на <a href="/info/333355">скорость десорбции</a> этанола (/), ацетона (//) н метилэтилкетона (///).

    Исходя из того, что влияние начальной концентрации активных центров на пределы цепного воспламенения может осуществляться только через квадратичные разветвления цепи (слг. 2), механизм диффузионного распространения холодного пламепи также сводится к квадратичным разветвлениям при взаимодействии относительно устойчивых промежуточных продуктов окисления. В этом предположении распространение холодного пламени лимитируется скоростью превращения исходного [c.209]

    Для оценки работы катализатора, содержащего различные количества воды, были использованы начальные участки (рис. 2), наклон которых определяется скоростью выделения пропилена или, условно, относительной активностью катализатора. На рис. 3 по оси ординат отложена эта относительная активность, т. е. тангенсы углов наклона начальных участков кривых рис. 2, а по оси абсцисс—степень заполнения поверхности катализатора хемосорбированной водой. Из рис. 3 видно, что заполнение водой первых 1—2% поверхности оказывает резкое влияние на активность катализатора, следующих 2—8% —более слабое, а дальнейшее заполнение поверхности водой не оказывает уже никакого действия на каталитическую активность. [c.123]

    Очень интересные Данные получены при испытании в Канпуре (Индия). Скорости коррозии стали были значительными в течение дождливых месяцев (июль) и зимой, а в марте и апреле коррозия практически не наблюдалась более того, образцы, выставленные на испытание в марте или апреле и испытывавшиеся в течение 12 мес., подвергались меньшей коррозии, чем образцы, выставленные на испытание в другие месяцы этот пример является хорошим доказательством влияния начальных условий коррозии на дальнейшее развитие процесса. Интересно отметить, что в противоположность результатам, полученным в Великобритании и Америке, начальные условия испытания не оказали сколь-нибудь заметного влияния на коррозию цинка, который в Индии корродировал значительно медленнее, чем сталь. Значение средней месячной относительной влажности не дает представления о коррозионной активности такой атмосферы особенно в Канпуре. Здесь в году есть только два месяца, в течение которых влажность превышает значение критической влажности 70% (июль и август), однако коррозия стали наблюдается и в другие месяцы. В этом случае коррозия в основном происходит за счет действия дождя и росы коррозия, возникающая за счет действия росы, может быть больше, чем за счет дождя, так как концентрация электролита в конденсированной влаге становится больше, если роса не смывается с поверхности дождем. Следует еще отметить интересные наблюдения, сделанные при испытаниях в Индии увеличение веса образцов до удаления продуктов коррозии было пропорционально уменьшению веса образцов после удаления продуктов коррозии удаление продуктов коррозии производилось либо в 5%-ной серной кислоте на катоде или в соляной кислоте, содержащей хлористое олово и мышьяковистый ангидрид [45]. [c.463]


    Измерены поверхность и пористость углей до и после озонирования. Определены кинетические параметры и состав продуктов окисления бурых углей озоном в газовой и жидкой средах. Процесс протекает практически в стационарном режиме, поглощение озона составляет 90%. Окисление сопровождается выделением в газовую фазу оксидов углерода СО и СО2. Показано, что среда окисления оказывает значительное влияние на скорость и механизм процесса при этом начальные скорости процесса различаются в 4 раза. Кинетические кривые озонирования бурого угля, подвергнутого карбонизации, аналогичны необработанным углям. Однако, количество выделяющегося СО2 в случае карбонизованного угля ниже более, чем в три раза что указывает на активное образование поверхностных кислородсодержащих групп. Лимитирующая стадия процесса протекает на поверхности угля, о чём свидетельствует нулевой порядок реакции. [c.91]

    Конкретная область применения того или иного углеродного материала в конечном итоге определяется его свойствами, на которые определяющее влияние оказывают условия осуществления процесса термолиза. В связи с этим бьш проведен активный планируемый эксперимент, в котором независимыми входными переменными служили технологические параметры процесса начальная температура греющей поверхности печи со стороны, обращенной к засыпи перерабатываемого материала, скорость подъема температуры, конечная температура нагрева, время выдерживания при конечной температуре. Объектами исследования служили бурый уголь разреза Константиновский (Днепровский бассейн), и длиннопламенные угли концентрат шахты им. Челюскинцев (Центральный Донбасс) и шахты Благодатная (Западный Донбасс). В результате реализации на каждом из типов сырья матрицы планирования 2 и обработки полученных экспериментальных данных были построены адекватно описывающие опытные данные уравнения регрессии, которые могут служить для определения рациональных технологических параметров, необходимых для получения углеродного материала с заданными свойствами, исходя из направления его дальнейшего использования. В частности, для газификации, где требуется выход летучих веществ не более 10 % и реакционная способность не менее 2 см /(г с), начальная температура греющей поверхности не должна превышать 600 °С, скорость подъема температуры - не более I °С/мин, конечная температура - 6(Ю-700 °С. Полученные результаты использованы при предпроектных проработках для опытной установки термолиза производительностью 10 тыс т сырья в год. [c.210]

    Для сравнения приведен график (рис. 4) изменения степени превращения с увеличением скорости газового потока, полученный при окислении водорода в реакторе с внутренним диаметром =71 нри 1о Вр=, а также расчетные кривые для слоев идеального вытеснения и идеального смешения с идеальным межфазным обменом, проведенные через начальную точку экспериментальной кривой. По графику трудно определить, ж какому типу реакторов можно отнести полученные данные. Это связано с тем, что при низкой активности катализатора (величина мала) влияние остальных коэффициентов на результаты процесса незначительно (ср. рис. 1 и 2 с рис. 4). В то же время при большой активности катализатора (. 1 велико) влияние Рев жК, становится очень заметным (см. рис. 3). [c.353]

    Исследовалось влияние облучения на прочность, предел вынужденной эластичности (Та и ползучесть [467, с. 103]. Испытуемые образцы помещали в охлаждаемые водой вертикальные каналы № 1 и № 2 экспериментального ядерного реактора, работающего на обыкновенной воде и обогащенном уране [468, с. 91 ]. Канал № 1 проходил через активную зону реактора, канал № 2 — через отражатель вблизи активной зоны. Дозу облучения образцов измеряли нестационарным калориметрическим методом по начальной скорости нагрева дозиметрических образцов. [c.169]

    Остановимся более подробно на особенностях структуры активной зоны. Псевдоожиженный слой по высоте делится, как известно, на три зоны зону влияния газораспределительной решетки среднюю зону и зону выбросов [482]. Исследование структуры и степени неоднородности псевдоожиженного слоя проводили [404] в колоннах диаметром 190, 300 и 435 мм. В качестве твердой фазы использовали песок ( ср. = 200 мк) и катализатор ( ср. = 40 мк). Газораспределительными устройствами являлись фетр толшиной 6 ЛИ и перфорированные решетки (ф = 0,67—12%) с отверстиями диаметром от 1 до б мм. расположенными в шахматном порядке. Установлено, что соотношения между зонами и характеристики последних зависят от начальной высоты и диаметра слоя, скорости газового потока и от типа газораспределительного устройства. [c.614]


    Примером процессов такого типа служит изученная Пеппером [28] полимеризация стирола под влиянием хлорной кислоты в дихлорэтане, для которой установлены следующие особенности. При обычных концентрациях мономера полимеризация протекает при 25° со взрывной скоростью. Проведение процесса в изотермических условиях возможно только при [М] 0.3 п [1] <10.001 моль/л, но и при этой концентрации мономера полимеризация идет с очень большой скоростью время, необходимое для достижения 50% конверсии, составляет 2 мин. Реакция, которая завершается полным исчерпанием мономера, имеет 1-й порядок по мономеру почти до 100 %-й конверсии, причем скорость процесса пропорциональна начальной концентрации кислоты. Введение новой порции мономера по окончании реакции вызывает возобновление полимеризации с прежней скоростью, что указывает на сохранение начальной концентрации активных центров, т. е. на отсутствие кинетического обрыва. Все это позволяет считать константу скорости полимеризации, получаемую непосредственно из эксперимента, константой реакции роста. [c.309]

    Активные мономеры образуют малоактивные начальные радикалы, так как в радикале сопряжение заместителя с непарным электроном приводит к смещению облака непарных электронов к другим 7С-СВЯЗЯМ, которые и нужно нарушить для протекания реакции присоединения. Активность мономера под влиянием сопряжения нарастает медленнее, чем снижается активность начального радикала, что следует из значений термохимического эффекта сопряжения мономеров и радикалов. Этим объясняется часто наблюдаемая большая скорость полимеризации мономеров, неактивных, но образующих реакционноспособные радикалы, по сравнению со скоростью полимеризации более активных мономеров, образующих нереакцпонноспособные радикалы. Ниже приведены значения термохимического эффекта сопряжения некоторых радикалов  [c.108]

    Исследования облученных и пеоб-лученных образцов катализатора методами рентгеновской и электронной дифракции не выявили сколько-нибудь заметных различий. Однако каталитические испытания обнаружили значительное влияние облучения. Эти испытания проводились путем измерения превращения бутена-1 в цис- и транс-бутен-2 в поточных опытах при 65° С и атмосферном давлении. Вследствие постепенной дезактивации катализатора потребовалось исследовать зависимость степени превращения от продолжительности работы при различных объемных скоростях сырья с последующей экстраполяцией к моменту нуль. Таким путем находили начальную активность данного катализатора при данной объемной скорости сырья лолучепные данные представлены графически на рис. 20 как функция величины, обратной объемной скорости. Из кривых рис. 20 видно, что облучение заметно снижает каталитическую активность алюмосиликата в реакции изомеризации бутена-1. В качестве продуктов реакции образовались только цис- и транс-бутея-2, а при данной степени превращения бутена-1 отношение транс- к иис-бутену-2 в присутствии облученного и необлученного катализаторов оказалось одинаковым. Следовательно, облучение влияет только на активность катализатора, но никаких новых реакций при изомеризации бутена-1 в присутствии облученного катализатора пе наблюдалось. [c.160]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    При изучении влияния начальной концентрации на скорость реакции было обнаружено, что при низких концентрациях реакция имеет первый порядок по бензолу, а нри высоких — порядок меньше единицы. Уменьшение соотношения ванадия и молибдена влечет за собой, уменьшение каталитической активности. Кинриянов и Шостак [93] изучили влияние изменения соотношения МоОз и УгОа в катализаторе на оптимальные выходы МА. Хотя выходы малеинового ангидрида, приводимые в этой работе, были довольно низкие, авторы показали, что максимальной активности катализатор достигает при содержании в нем от 70 до 85% У2О5 и от 15 до 30% МоОз. [c.213]

    Эффект увеличения стабильности работы катализаторов гидроочистки при введении добавки титана (снижение скорости подъема темпзратуры для обеспечения постоянной глубины очистки сырья во времени) усиливается при изменении атомного отношения М(Со)/Мо в составе каталитической системы от 1 0,3 до 1 1,75 [103]. При этой введение фосфора оказывает отрицательное влияние на стабильность работы катализаторов, содержащих добавку титана, хотя начальная активность при введении фосфора не, снижается [108]. Позтойу при синтезе катализаторов, содержащих добавку титана, следует избегать использования пропиточных растворов активных компонентов, стабилизированных фосфорной кислотой. В [ш] показано, что при введении титана на стадии осаждения гидроокиси алюминия кислотным способом замена А(С( на А (0Н)2С поаволяет в 2 раза снизить скорость подъема температуры в процессе гидроочистки атмосферного остатка на катализаторе Со-Мо/А 20з-Т102, который необходим для поддержания содержания серы в гидрогенизате на уровне 0,5% при начальной температуре 887°С. [c.37]

    Гриценко и Медведев [88] исследовали кинетику полимеризации акрилонитрила в водных растворах при 40—75° с инициатором — гидроперекисью кумола и показали, что с ростом концентрации инициатора скорость полимеризации сначала растет, а затем становится практически независимой от нее. Порядок реакции относительно концентрации мономера равен 3/2, полная энергия активации — 19,6 ккал/моль. Авторы предполагают, что акрилонитрил и гидроперекись кумола образуют окислительно-восстановительную систему, причем окислительным компонентом является гидроперекись, а восстановительным — ионизированная форма акрилонитрила. При добавке в систему восстановителей (Ре304, НагЗОз, ЫаН804 К4ре(СЫ)в и других) скорость полимеризации значительно возрастает, наблюдается значительное снижение суммарной энергии активации процесса. Авторы считают, что при окислительно-восстановительном инициировании эмульсионной полимеризации влияние водной среды состоит в том, что она создает условия для протекания быстрых, требующих малой энергии активации, ионных процессов образования начальных активных центров, вследствии чего интенсифицируется и весь процесс в целом. [c.561]

    Из приведенных данных видно, что в подавляющем большинстве случаев п = 1 или близко к ней. Следовательно, скорость процесса полимеризации пропорциональна интенсивности инициирования, т, е. числу начальных активных центров. В отдельных случаях п< 1. Величины п, близкие к 0,5, могут быть интерпретированы как результат бимолекулярного обрыва цепей. Однако значения п 0,5 не были получены. Это может быть связано с более сложным механизмом обрыва цепей или с наличием нескольких механизмов. Незначительным отклонениям п от единицы не следует, по-видимо-му, придавать большого значения, так как это, возможно, связано с условиями эксперимента. То, что величина п в большинстве случаев равна единице, означает, что полимеризационные цепи обрываются преимущественно на гранях кристаллитов, дефектах решетки, при рекомбинации ионов с захваченными электронами или при захвате электронов радикалами. На такие механизмы обрыва цепей указывает, в частности, влияние добавок различных веществ [173]. Возмояшо также, что наблюдавшиеся в ряде случаев [150, 156, 161 168, 169, 174] большая скорость процесса и большие степени превращения при полимеризации в кристаллах более крупного размера также связаны с меньшим обрывом цепей на гранях кристаллитов. [c.328]

    В работе Хардевельда и Хартога [208] исследовались катализаторы Ni на аэросиле, различавшиеся средним размером частиц и их распределением по величине. На основании интенсивности полос поглощения в ИК-спектре адсорбированных молекул N2, СО и СО2 авторы [208] оценили долю активных центров (о природе этих центров см. ниже) на поверхности никеля и сопоставили ее с каталитической активностью и селективностью в реакциях обмена и дейтерирования бензола. Авторы показали, что отношение скоростей обмена и дейтерирования и начальное изотопное распределение в молекулах бензола испытывают значительные колебания в зависимости от типа катализатора. Высокая активность в реакциях обмена обусловлена приаутствием крупных кристаллитов и предположительно связана с наличием в них дефектов. Эта высокая активность почти полностью компенсирует уменьшение числа поверхностных атомов по мере увеличения размера кристаллов, в результате чего поверхность кажется однородной по отношению к реакции дейтерирования. Таким образом, данные цитируемой работы показывают, что величина кристаллов оказывает решающее влияние на активность и селективность никелевых катализаторов. Независимость каталитической активности в реакции гидрирования циклогексена от дисперсности Ni в Ni—MgO-катализаторах была отмечена в работе [209]. Удельная каталитическая активность [c.64]

    Результаты, полученные на лантансодержащих цеолитах, показывают, что стабильная активность этих катализаторов растет при увеличении степени обмена вплоть до 95% (см. табл. 13). В этом ряду роста константы скорости наблюдается снижение значения энергии активации. Если рассматривать и стабильную и первоначальную активность этих цеолитов, то можно заметить более сложную картину (рис. 17). Прежде всего величины начальной активности образцов с содержанием лантана от 27 до 69% очень близки между собой и характеризуются маленькими значениями наблюдаемых энергий активации. Регенерация катализаторов, как вид-нр из рис. 17, приводит к разным уровням их стабильной активности. Эти результаты, по-видимому, указывают на важную роль катионов в активности и стабильности цеолитных катализаторов. Можно предположить, что высокая первоначальная активность указанных цеолитов обусловлена кислотными центрами, усиленными присутствием трехвалентных катионов лантана в больших полостях. При термической обработке катализаторов, как известно [20], катионы лантана перемещаются в недоступные места в малые полости 5 х или в гексагональные призмы 1, а вместо них в большие полости выходят катионы натрия, что приводит к изменению каталитических свойств цеолитов. Влияние такого процесса миграции катионов тем больше, чем меньше степень обмена, поскольку при снижении степени обмена усиливается отравляющее действие, вызванное выходом катионов натрия в большие полости. Представляет интерес результат, полученный на образце со степенью обмена натрия на [c.65]

    Ю. И. Ермаков. Результаты, полученные нами при изучении влияния аммиака йа активность окиснохромового катализатора полимеризации, нанесенного на алюмосили- кат, свидетельствуют о механизме влияния NHg,отличном от предложенного в докладе 13, При проведении полимеризации этилена в условиях, близких к реальным (75° С и 15 атм), активность катализатора, восстановленного аммиаком, в лучшем случае, достигает активности исходного. Стационарная скорость полимеризации на катализаторах, обработанных аммиаком, обычно ниже, чем на исходных, однако такие катализаторы вызывают повышение скорости в начальном периоде реакции (подобное явление вызывают и другие восстановители, например СО, SOj, jHJ. Мы обнаружили, что константа скорости роста (Лр) при обработке катализатора аммиаком возрастает, а концентрация центров роста снижается, поэтому повышения общей активности катализатора не происходит. В то же время, по данным химического анализа, ион хрома в центре роста имеет степень окисления не выше трех, а ионы Сг вообще отсутствуют.. Таким образом, при обработке аммиаком может измениться структура центра роста цепи, что, вероятно, связано с образованием комплексного соединения между NHg и хромом, входящим в центр роста. Увеличение активности катализаторов при обработке аммиаком, наблюдавшееся авторами работы, обусловлено тем, что измерение каталитической активности проводили при низкой температуре (0° С), при которой нельзя судить о стационарной активности окисных катализаторов полимеризации (а, следовательно, о стационарной концентрации активных центров). Это связано с тем, что восстановление хрома в катализаторе является необходимой стадией инициирования. При низких температурах процесс инициирования в невос- становленном катализаторе происходит медленнее, чем в катализаторе, обработанном восстановителем, поэтому сгадл) и э щ i j (эаграция активных центров не достигается. [c.208]

    Активные мономеры образукп- малоактивные начальные радикалы. Активность мономера под влиянием сопряжения нарастает (медленнее, чем снижается активность начального радикала, что следует из значений термохимического эффекта сопряжения мономеров и радикалов. Этим объясняется часто наблюдаемая большая скорость полимеризации неактивных мономеров, образующих реакционноспособные -радикалы, ло сравнению со скоростью полимеризации более активных мономеров, обра--зующих ереакционноспособные радикалы. Ниже приведены значения термохимического эффекта сопряжения некоторых ра- [c.122]

    Исследовали также кинетику димеризации этилена под влиянием весьма активной каталитической системы — этилалюминийсескви-хлорид-Ьнафтенат никеля в среде толуола при 20° С и МПа [181]. На рис. 9 приведены кинетические кривые 1, 2 и 3), соответствующие концентрациям [N1] 0,37-10- , 1,11-10 и 4,44-10— моль/л при соотношении А1 №=100 1. Начальная скорость почти линейно возрастает с повышением концентрации катализатора в реакционной смеси. Селективность по -бутиленам (кривые 4, 5 и 6) мало зависит от концентрации катализатора и остается в пределах 90—97%, несколько снижаясь с ростом степени конверсии этилена. [c.42]

    В поверхностных водах величины БПКо колеблются от 0,5 до 4,0 мг/л и подвержены сезонным и суточным изменениям. Сезонные колебания в основном зависят от изменения температуры, исходной концентрации растворенного кислорода. Влияние температуры сказывается через её воздействие на скорость процесса потребления, которая увеличивается в 2...3 раза при повышении температуры на 10°С. Влияние начальной концентрации кислородщ на процесс ВПК связано с тем, что значительная часть микроорганизмов имеет свой определенный кислородный оптимум для развития и в целом для физиологической и биохимической активности. [c.51]

    Тщательность обработки поверхности, например тонкая шлифовка и тем более полировка, повышает устойчивость против коррозии [8]. Для сплавов, находящихся в активном состоянии и, следовательно, в данных условиях корродирующих с более или менее заметной скоростью, влияние полировки, естественно, будет сказываться на повышении коррозионной устойчивости только на начальных стадиях. Положительное влияние тщательной обработки поверхности гораздо сильнее выражено при атмосферной коррозии и, особенно, в условиях нахождения сплава в пассивном состоянии. В указанных случаях начальный инкубационный период коррозии может растягиваться на неопределенно продолжительное время. Поэтому повышение устойчивости в начальный период для металла, находящегося в пассивирующих условиях (например, для стали при атмосферной коррозии), может соответствовать значительному повышению общей коррозионной устойчивости металла в данных условиях. Так, например, на основании исследования влияния характера обработки поверхности нержавеющих сталей XI3 и 1Х18Н9Т на скорость их коррозионного разрушения в растворе хлористого натрия можно в первом [c.251]

    Влияние -носителя на гидрогенолиз циклопропана и метилциклопропана исследовалось на нанесенных катализаторах Р1/А120з и Р1/(5102—АЬОз) [88]. Показано, что начальные скорости гидрогенолиза обоих углеводородов на Р1/А1г0з пропорциональны поверхности Р1. В присутствии катализаторов Р1/(5102—А 2О3), содержащих менее 1% Pt, активными компонентами являются как Р1, так и носитель. При большем содержании Р1 в катализаторе селективность, выраженная отношением изобутан/к-бутан, сохраняет постоянное значение по мнению авторов [88], это указывает на то, что гидрогенолиз протекает исключительно на металлических центрах. [c.103]

    Влияние давления на скорость реакции, предсказываемое теорией активных центров, видно из рис. Х1У-3 и Х1У-4, которые показывают, что при низких давлениях все реакции имеют приблизительно первый порядок. При более высоких давлениях скорость поддерживается на том же уровне, приобретая нулевой порядок, или даже может уменьшаться. Более детально соответствующие вопросы с использованием данных о начальной скорости процесса описаны Янгом и Хоугеном 27 о. Левеншпиль 417 [c.417]

    Для процесса окисления метанола в формальдегид на железомолибденовом катализаторе, осуществляемого в комбинированном реакторе, наиболее опасны для трубчатой части аппарата неоднородности температуры хладоагента и активности катализатора, а для адиабатического слоя — неоднородности содержания непрореагировавшего метанола на входе и константы скорости окисления формальдегида. Для процесса окисления двуокиси серы наиболее опасна неоднородность по начальной температуре перед слоем, так как ее вредное влияние часто не может быть устранено никаким запасом катализатора. [c.16]

    Результаты коррозионных испытаний металлов в условиях коксования (при различных температурах, напряженных состояниях образцов, содержания серы и длительности температурного воздействия) показывают, что с увеличением температуры скорость коррозии экспоненциально возрастает [25]. При температуре 300-320 °С характер влияния напряжений в образце изменяется. По нашему мнению, это связано с протеканием на поверхности металла, контактирующей с нефтяным остатком, конкурирующих взаимовлияющих процессов. Образующиеся на поверхности в результате действия напряжений активные центры, с одной стороны, интенсифицируют процессы коррозии в начальный момент времени, а с другой стороны, создают благоприятные условия для образования кокса, что в последующем ведет к их блокированию. В дальнейщем действие этого фактора преобладает. Такой характер коррозионного разрушения под напряжением в средах коксования более четко выражен при повышенных температурах, поскольку интенсивность коксообразования при этом значительно возрастает. [c.21]

    Анализ имеющейся адекватной информации о коррозии углеродистой стали в морской воде [73—76] позволяет составить более широкое представление о влиянии места проведения испытаний и о пределах изменения стационарных скоростей коррозии прн продолжительных экспозициях. Зависимости коррозионных потерь от времени имеют в основных чертах такой же вид, как и обсуждавшиеся выше. После высоких потерь в начальный период экспозиции скорость коррозии уменьшается и приближается к стационарному значению, которое, как можно предположить, определяется совместным влиянием обрастания и бактериальной активности. В табл. 162 представлены начальные и стацио -нарные значения скоростей коррозип стали в 7 различных местах. Стационарные скорости коррозии рассчитаны 1Ю наклону линейного участка зависимости коррозионных потерь от времени экспозиции. Хотя температуры, формы обрастания и сезонные циклы роста в местах проведения испытаний существенно отличаются (географическая широта изменяется от 9 до 51" северной широты), стационарные скорости коррозии углеродистой стали во всех случаях лежат в пределах узкого интервала 50—75 мкм/год. [c.451]

    Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки. [c.453]

    Для исследования термического разложения ЭДТА и ее солей в условиях взаимодействия их растворов с перлитными сталями был использования стакан из углеродистой стали 20, размещенный в автоклаве. Исходная концентрация растворов в большей части опытов была равна 100 мг/кг, но одна серия опытов проведена при концентрации трилона Б 1000 мг/кг. Результаты опытов приведены на рис. 7-4, из которого видно, что при контакте раствора трилона Б со сталью 20 уже при комнатной температуре комплексон активно реагирует с металлом и скорость реакции усиливается по мере повышения температуры. Так, к концу опыта при температуре 100°С концентрация комплексона составляет около 35% от начальной, а при 200°С уменьшается до 20—25%. Отсутствие монотонности зависимостей на рис. 7-4 объясняется влиянием температуры на сложные подвижные равновесия между находящимися в растворе [c.75]

    Устойчивость горения бензино-воздушных смесей в турбулентно потоке изучалась Э. Л. Солохиным. Ставилась задача выявить влияние параметров потока (скорость, турбулентность, избытки воздуха) и размеров тел плохообтекаемой формы на срывные характеристики корытообразных стабилизаторов. В ре зультате исследования было установлено, что с увеличением характерного размера стабилизатора его стабилизирующая способность повышается. Увеличение скорости потока и начальной турбулентности потока ухудшает характеристик стабилизатора и приводит к тому,, что срыв пламени наступает при меньших избытках воздуха. Другими словами, чем выше начальная турбулентность активного потока, тем более высокие температуры требуется поддерживать в зоне рециркуляции продуктов сгорания. Ухудшение устойчивости горения при интенсификации турбулентности потока, особенно в районе зажигания , отмечалось Л. Н. Хитриным [Л. 8]. Эти положения справедливы только при том условии, что турбулентность потока увеличивается в результате роста скорости. Если же повышать турбулентность потока путем его закручивания, то стабильность горения растет с увеличением интенсивности крутки. [c.51]

    Чрезвьлайно высокую активность проявляют исследовательские группы Р. Томпсона (университет штата Айова) [261, 262, 340 - 342, 360, 361] и Й. Пао - В. Саше (Корнеллский университет) [193, 242, 243, 299 - 302]. Усилия обеих групп направлены на измерение остаточных напряжений, поэтому они исследуют одни и те же про- < блемы - влияние структуры образца на значение акустоупругих коэффициентов, влияние предыстории образца на начальные значения скорости звука и т.п. [c.22]

    При изучении влияния как pH, так и температуры на скорость ферментативного превращения, необходимо следить, чтобы изменение, рИ или повышение температуры не выходило за допустимые пределы, индивидуальные для каждого фермента, так как это может привести к необратимой потере им каталитической активности (инактивации фермента). В этом случае в ходе ферментативногх) превращения может происходить падение скорости реакции, вызванное уменьшением полной концентрации сохранпвши.ч активность молекул, т.е. величины [E]f. Если кинетические измерения проводятся с целью получения кинетических параметров, следует ограничиваться измерениями начальной скорости превращения, т.е. проводить эксперименты в течение непродолжительного времени, за которое вкладом инактивации фермента можно пренебречь. Если же речь идет об использовании фермента как катализатора для получения некоторого продукта превращения или для удаления какого-либо нежелательного компонента из реакционной смеси, то следует подбирать оптимальную температуру, при которой положительный эффект, связанный с увеличением скорости реакции в результате повышения температуры, еще перевешивает эффект замедления от прстепенно нарастающей во времени потери фермента в результате инактивации. [c.215]

    Заполнение поверхности электрода поверхностно-активным веществом увеличивается со временем адсорбции, т. е. со временем, протекшим от момента зарождения капли. Следовательно, в течение периода жизни капли изменяется со временем и эффективная величина фх-потенциала. Впервые необычную зависимость предельного кинетического тока, ограниченного скоростью рекомбинации анионов кислот, от времени в пределах жизни одной капли наблюдала В. Фолькова [635, 636]. Она показала, что предельный ток, ограниченный скоростью рекомбинации анионов фенилглиок-силовой кислоты, резко возрастает при добавлении в раствор небольших количеств поверхностно-активного алкалоида — атропина. При этом начальный участок кривых сила предельного тока — время (кривых I — t) представляет собой параболу с показателем степени, большим единицы, а в некоторых случаях достигающим даже величины 1,6, тогда как у чисто объемных кинетических токов в отсутствие влияния двойного слоя этот показатель не превышает Повышение предельного тока и быстрый его рост со временем в течение жизни капли при введении в раствор атропина объясняется накоплением на поверхности электрода адсорбированного атропина, приводящим к снижению отрицательного г1з1-потенциала со временем и повышению адсорбируемости анионов фенилглиоксиловой кислоты. Наблюдаемый в этом случае очень высокий показатель степени у кривых г — i обусловлен, по-видимому, 8-образной формой изотермы адсорбции анионов фенилглиоксиловой кислоты, скоростью рекомбинации которых в адсорбированном состоянии ограничен наблюдаемый кинетический ток, а также 8-образной формой изотермы адсорбции атропина. [c.156]

    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]


Смотреть страницы где упоминается термин Скорость влияние начальной активности: [c.242]    [c.131]    [c.64]    [c.127]    [c.294]    [c.295]    [c.300]    [c.118]    [c.89]    [c.421]    [c.137]    [c.286]   
Регенерация адсорбентов (1983) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте