Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут состояния

Рис. 49. Диаграмма состояния системы олово — висмут — свинец с тройной Рис. 49. <a href="/info/315031">Диаграмма состояния системы</a> олово — висмут — свинец с тройной

    Физико-химический анализ различных систем показывает, что во многих случаях максимумам на кривой плавкости не отвечают сингулярные точки на кривых, выражающих другие свойства системы. Так, например, на диаграмме состояния таллий—висмут (рис. (XIV, II), несмотря на наличие двух явно выраженных максимумов на кривой плавкости, на кривых состав—свойство [c.411]

    Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

    На рис. IX. 1, а представлена диаграмма состояния системы Сс1—В1. По оси абсцисс отложен состав этих веществ. Ордината А отвечает 100% Сс1, ордината В—100% В1. Точки а и Ь соответствуют температурам кристаллизации (или плавления) чистых кадмия и висмута. Области существования различных фаз в зависимости от температуры и состава показаны на рис. IX. 1, а арабскими цифрами. [c.103]

    XIV, 11. Диаграмма состояния системы таллий—висмут  [c.412]

    По кривым охлаждения системы кадмий — висмут (рис. 35) постройте диаграмму плавкости. Обозначьте точками состояния систем а — чистый висмут в равновесии с расплавом висмута б — жидкий расплав при 573 К, содержащий 30 % d в — расплав, со- [c.245]

    Т. пл. висмута 271° С разность молярных объемов висмута в жидком и твердом состояниях Ло = —0,72 см /моль. При какой температуре висмут расплавится под давлением 1,013-10 Па Скрытая теплота плавления висмута 54,47 Дж/г. [c.77]

    Элементы группы 5А проявляют самые разнообразные свойства, от сильно неметаллических у азота до явно металлических у висмута. Азот и фосфор обнаруживают степени окисления от -Ь 5 до — 3. Фосфор, не столь электроотрицательный, как азот, чаще, чем азот, встречается в состояниях с положительными степенями окисления. Важнейшим источником азота служит земная атмосфера, в которой он существует в виде молекул N2- Наиболее важным промышленным процессом связывания N2 в соединения является процесс получения аммиака по методу Габера. Другой важный промышленный процесс, процесс Оствальда, используется для превращения МНз в азотную кислоту НМОз-Это сильная кислота и одновременно хороший окислитель. Соединения азота применяются как важные сельскохозяйственные удобрения. [c.330]


    Примеси, обычно содержащиеся в меди (кислород, сера, висмут, свинец, железо), являются, как правило, вредными. Чем чище медь, тем лучшими механическими свойствами и более высокой коррозионной стойкостью она обладает. Особенно вредной является примесь кислорода, так как эта примесь способствует выделению закиси меди по границам зерен в виде эвтектики, которая является причиной хрупкости и хладноломкости меди при ее обработке в холодном состоянии. При взаимодействии с кислородом и другими окислителями медь не способна к пассивации и защитные пленки на ее поверхности не образуются. [c.246]

    Кривая плавления ОС разграничивает области кристаллического (I) и жидкого (II) состояний и выражает равновесие (в). При равновесии (в) возможно и 2 > V (обычно) и V2 < Vi (у некоторых веществ, например, у воды, висмута). Если Vu [c.63]

    На рис. IX. 5, а представлена диаграмма плавкости системы В1—РЬ, для которой характерна частичная растворимость в кристаллическом состоянии висмут растворяет до 10% РЬ, а свинец— до Ю7о В[. Поэтому из расплавов, в которых имеется избыток висмута по сравнению с его содержанием в эвтектической смеси, кристаллизуется не чистый висмут, а твердый раствор свинца в висмуте. [c.111]

    Сплавы на основе олова. Одним из недостатков покрытий чистым оловом является быстрая потеря способности к пайке (после 1—2 недель), а также образование самопроизвольно растущих нитевидных кристаллов ( вискеров или усов ), что недопустимо при изготовлении радиоэлектронных приборов, особенно печатных плат. Легирование олова висмутом, никелем, свинцом, кобальтом предотвращают как возникновение усов , так и аллотропные видоизменения олова при низких температурах, сопровождающиеся превращением его в порошкообразное состояние ( оловянная чума ). Кроме того, сплавы 5п— до I % В1, 8п —до 1% Со, 5п — 10—60 % РЬ (матовые после оплавления или блестящие) значительно дольше, чем олово (до года), сохраняют способность к пайке. [c.52]

    При каких концентрациях висмута в системе, нагретой до 113° С, можно получить твердый раство]) Bi—РЬ (рис. 16) Как изменяется растворимость в твердом состоянии при понижении температуры  [c.47]

    В свободном состоянии висмут представляет собой блестящий розовато-белый хрупкий металл плотностью 9,8 г/см . Его применяют как в чистом виде, так и в сплавах. Чистый висмут используют главным образом в энергетических ядерных реакторах в качестве теплоносителя. С некоторыми металлами висмут образует легкоплавкие сплавы например, сплав висмута со свинцом, оловом и кадмием плавится при 70 °С. Эти сплавы применяют, в частности, в автоматических огнетушителях, действие которых основано на расплавлении пробки, изготовленной из такого сплава. Кроме того, они используются как припои. [c.450]

    На рис. 9.2, б изображена кривая охлаждения смеси /, состояние которой характеризуется точкой I. Охлаждению этой смеси отвечает движение фигуративной точки по вертикальной прямой Пе2. Кристаллизация рассмотренной смеси начинается при температуре, соответствующей точке I. При этой и более низкой температуре из жидкого расплава выпадают кристаллы висмута, а жидкость обогащается кадмием и изменяет состав по линии ликвидуса 1Е. [c.158]

    Диаграмма плавкости является диаграммой состояния. Различные ее участки характеризуют определенные фазовые состояния системы. Очевидно, точки, лежащие выше линии ликвидуса, отвечают жидкой фазе, точки поля АЕС — равновесию жидкой фазы с кристаллами висмута, точки поля ВЕО — жидкой фазе [c.158]

    Это означает, что если изменить любой из параметров, то никаким изменением других параметров нельзя возвратить систему к состоянию равновесия между тремя фазами. Если снизить даже незначительно температуру ниже точки О, то исчезнет жидкая фаза, останется лишь смесь кристаллов висмута и кадмия. Кристаллизация в эвтектической точке происходит в особых условиях. В каждой, даже самой небольшой порции расплава одновременно кристаллизуются оба компонента системы. Это приводит к тому, что образуется идеально перемешанная смесь очень мелких кристалликов. Такая смесь высокодисперсных кристалликов называется эвтектической смесью или просто эвтектикой. Вследствие высокой дисперсности эвтектики она обладает иными физическими свойствами, чем простая механическая смесь сравнительно крупных кристаллов обоих компонентов системы. При сравнительно небольшом увеличении такие кристаллы неразличимы в поле микроскопа. [c.117]

    Элементы подгруппы мышьяка дают комплексы и в трехвалентном состоянии. Устойчивость этих галогенопроизводных увеличивается при переходе от мышьяка к висмуту и от фтора к брому и иоду. Трехвалентные элементы рассматриваемой подгруппы проявляют переменное координационное число 4 и 6. (табл. 63). [c.206]

Рис. 8. Диаграмма состояния двухкомпонентиой системы кадмий — висмут (а) Рис. 8. <a href="/info/2482">Диаграмма состояния</a> двухкомпонентиой <a href="/info/1003284">системы кадмий</a> — висмут (а)

    Между различными классами элементарных веществ нет резких границ, и многие элементарные вещества обладают промежуточными свойствами. Так, например, узлы кристаллической решетки металла галлия образованы не положительно заряженными ионами, а двухатомными молекулами низкотемпературное видоизменение олова характеризуется кристаллической решеткой атомного типа и наличием полупроводниковых свойств эти свойства обнаруживаются в твердом состоянии у таких элементарных окислителей, как селен и астат белое видоизменение металлоида фосфора характеризуется летучестью, и непрочностью кристаллической решетки молекулярного типа элементарные металлоиды висмут и полоний обладают металлической электропроводностью. Таким образом, границы между элементарными металлами и металлоидами и между элементарными металлоидами и окислителями до известной степени условны. [c.37]

    К каждой из этих диаграмм приложимо все, что было сказано относительно диаграммы состояния двухкомпонентной системы висмут—кадмий. [c.383]

    Для снижения дезактивирующего влияния примесей сырья на катализаторы крекинга в последние годы весьма эффективно применяется технология ККФ с подачей в сырье специальных пассиваторов металлов, представляющих собой металлоорганические комплексы сурьмы, висмута, фосфора, олова и других элементов. Сущность пассивации заключается в переводе металлов, осадивщихся на катализаторе, в неактивное (пассивное) состояние, например в результате образования соединения типа шпинели. [c.117]

    Висмут—мало расиростраиенный в природе элемент содср-кание его в земной коре составляет 0,00002(масс.). В природе )н встречается как в свободном состоянии, так и в виде сосдиие-1ИЙ — висмутовой охры В120з и висмутового блеска 61283. [c.429]

    Сурьма и висмут встречаются в свободном состоянии (хотя и очень редко). Основной минерал мышьяка — арсенопирнт FeAsS, кроме того, мышьяк образует минералы реальгар ASiSf и аурипиг- [c.424]

    Свойства. Мышьяк и сурьма имеют ряд аллотропных моди- фикаций. Наиболее устойчивы металлические формы серого (Ав) и серебристо-белого (5Ь) цвета. Это хрупкие вещества, легко пре-рращаемые в ступке в порошок. Висмут — металл серебристо-бе- 10Г0 цвета с едва заметным розовым оттенком. Он менее хрупок, 1ем сурьма, но и его легко разбить ударом молоткАд Висмут — одно из немногих веществ, плотность которых в жидком состоянии больще, чем в твердом. Некоторые свойства элементных Аз, ЗЬ и В1 указаны в табл. 3.5. [c.426]

    Числом электронов наружной оболочки определяются валентные состояния, свойственные данному элементу, а следовательно, типы его соединений — гидридов, окислов, гидроокисей, солей и т. д. Так, в наружных оболочках атомов фосфора, мышьяка, сурьмы и висмута находится одинаковое число (пять) электронов. Этим определяется одинаковость их основных валентных состояний (—3, -fЗ, -Ь5), однотипность гидридов ЭНз, окислов Э2О3 и ЭаОб, гидроокисей и т. д. Данное обстоятельство в конечном счете и является причиной того, что указанные элементы располагаются в одной подгруппе периодической системы. [c.42]

    Свойства элементарных сурьмы и висмута. В свободном состоянни сурьма и висмут имеют соответственно серебристо-белый и розовато-серебристый цвет они хотя и напоминают металлы, но типичные для металлов свойства выражены у них очень слабо. Они хрупки и но электрической проводимости довольно сильно уступают настоящим металлам. Значения физических свойств сурьмы и висмута приведены в табл. 44. [c.366]

    Образующийся осадок 5Ь20з-гаН20 легко теряет воду и переходит в оксид 5Ь20з. Имеются сомнения в существовании соединения состава 5Ь(ОН)з. Гидроксид висмута В1(0Н)з выделен в свободном состоянии. [c.428]

    С точки зрения критериев, обсуждавшихся в начале данной главы, висмут следует считать скорее металлом, чем неметаллом. Висмут обычно обнаруживает степень окисления + 3 и мало склонен проявлять высшее состояние окисления + 5, столь обычное для фосфора. Наиболее распространенным оксидом висмута является В120з. Это вещество нерастворимо в воде или в основном растворе, но растворяется в кислом растворе. Поэтому его относят к основным ангидридам. Как мы уже знаем, оксиды металлов характеризуются тем, что ведут себя как основные ангидриды. [c.327]

    Ж. Пруст, 1801—1808 гг.). Это значит, что соотношения между массами элементов, входящих в состав соединения, постоянны. Закон всегда выполняется для газообрг13ных и жидких веществ. Для вещества, находящегося в твердом состоянии, строго говоря, закон не справедлив. Это связано с тем, что в кристаллической структуре любого твердого вещества всегда, в той или иной мере, имеются пустоты, не заполненные атомами, примесные атомы других элементов и другие отклонения от идеальной структуры. На все это, наряду с температурой, давлением, концентрациями веществ, влияет очень большое число других факторов, связанных уже с технологией получения, выделения и очистки вещества. Так, в соединении висмута с таллием на единицу массы таллия может [c.19]

    Висмут — мало распространенный в природе элемент содержание его в земной коре составляет 0,00002% (масс.). В природе он встречается как в свободном состоянии, так и в виде соединений — висмутовой охры B12O3 и висмутового блеска 61283. [c.450]

    Действием очень сильных окислителей на соединения висмута (III) можно получить соединения висмута (V). Важнейшие из них это висмутаты — соли не выделенной в свободном состоянии висмутовой кислоты, например висмутат калия КВ1О3. Эти соединения представляют собой очень сильные окислители. [c.451]

    Припоями называют сплавы, используемые при пайке металлов высокой проводимости. Для получения хорошего соединения припой должен иметь температуру плавления ниже, чем у металла, хорошо смачивать поверхность в расплавленном состоянии, иметь небольшое сопротивление контакта. Температурные коэффициенты линейного расширения металла и припоя должны быть близки друг к другу. Применяют припои оловянно-свинцовые (например ПОС-61, содержащий 61% олова, а остальное— свинец), оловяно-цинковые (ПОЦ-90 имеет температуру плавления 199 °С и используется для пайки алюминия и его сплавов), сплавы висмута со свинцом, оловом, кадмием (для температур нагрева меньше, чем 100 °С) и др. [c.637]

    В качестве примера рассмотрим диаграмму состояния системы кадмий — висмут d — Bi (рис. 8, а). Область 1, расположенная выше линий АО и ОВ, называемых линиями ликвидуса (от латинского liquidus — жидкий), отвечает жидкому раствору (расплаву) кадмия и висмута. В этой области система однофазна и обладает двумя степенями свободы / 2 — 1 1 = 2. В известных пределах можно произвольно изменять и температуру, и концентрацию (состав), не вызывая появления новых фаз. [c.116]

    Мышьяк, сурьма и висмут сравнительно мало распространены их содержание в земной коре составляет (мае. доли, %) Аз 5-10 , 8Ь 4-10 , В1 2-10 . Встречаются очень редко в самородном состоянии и в основном в виде соединений РеАзЗ (мышьяковистый колчедан), ЗЬаОз (сурьмяный блеск, илн антимонит), В123,5 (внсмутовый блеск) и др. [c.304]


Смотреть страницы где упоминается термин Висмут состояния: [c.284]    [c.418]    [c.418]    [c.115]    [c.255]    [c.100]    [c.578]    [c.330]    [c.117]    [c.118]    [c.123]    [c.125]    [c.275]   
Аналитическая химия висмута (1953) -- [ c.259 , c.291 ]




ПОИСК







© 2025 chem21.info Реклама на сайте