Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции окиси этилена с бензолом

    Этилен был одним из исходных материалов. Предварительно из этиленового сырья тщательно удаляют органические кислоты, формальдегид, ацетилен, кислород, окись углерода, бензол и высшие углеводороды. Из хлористого алюминия (5—7% на конечный продукт) и легкого масла процесса приготовляют каталн-заторную смесь. Затем добавляют этилен до давления в реакторе 30 ат и повышают температуру до 70°. При этой температуре начинается реакция. [c.375]


    Каталитическое действие примеси окислов азота N0 и N0.2 известно давно. Метан, этап, этилен, бензол окисляются в их присутствии при более низкой температуре, что способствует сохранению промежуточных продуктов окисления — муравьиного а.льдегида, уксусного альдегида, фенола, спиртов, кетонов и т. п. По-видимому (хотя это еще непосредственно и не доказано), N0 и N02 проявляют при этих довольно высоких температурах свою радикальную природу и, реагируя с молекулами горючего, образуют активные углеводородные радикалы, начинающие цепи окисления. Окись азота почти снимает типичный для окисления чистых углеводородов период индукции, увеличивает скорость окисления в период реакции (после периода индукции) и нередко меняет самый вид кинетических кривых. [c.252]

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]

    При высоких Т этилен почти нацело разлагается на ацетилен и водород, но ниже ок. 1000°, наоборот, его можно получать синтетически из ацетилена (ускоряя реакцию соответствующими катализаторами). Что же касается до расщепления этилена с образованием метана, то оно возможно при любых Т. Образованию углерода при этом разложении надо приписать сильно коптящее пламя как этилена, так и бензола (см. выше). [c.270]

    Для этого процесса применимы также катализаторы процесса дегидрирования этилбензола в стирол. Так, например, при применении для дегидрирования изопропилбензола цинкового стирольного катализатора наблюдается довольно большая активность и селективность в ходе образования а-метилстирола. В качестве побочных продуктов образуются небольшие количества бензола, толуола, этилбензола и стирола, а в качестве газообразных—метан, этилен, пропилен, двуокись и окись углерода (две последние за счет реакции водяного газа с попутно образующимся углеродом). Побочные продукты образуются в результате термического разложения изопропилбензола и продуктов реакции, а также в [c.248]


    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Установлено, что в результате реакции ларофазного окисления бензола кислородом образуются фенол, различные конденсированные соединения (включая дифенил), так называемые амолы , с температурой кипения выше, чам у фенола, окись углерода, углекислый газ, продукты пиролиза (метан, этилен, ацетилен, водород и др.), а также хинон и формальдегид. Малеиновый анпидрид и дифениловый эфир не обнаружены. Количество смолы определяют (путем отгонки бензола из навески конденсата на полумикродистиллящ ионной колонке. Разгонкой с паром и обработкой щелочью установлено, что смола в основном состоит из дифенила (от 30 до 50% по весу) и высокомолекулярных кислородсодержащих соединений, нерастворимых в щелоча Х. [c.96]

    В промышленном масштабе фирма Коннерс Ко инк, Питтсбург [23] уже с 1943 г. применяет каталитический процесс со стационарным катализатором кремневая кислота-окись алюминия. Активным компонентом катализатора является окись алюминпя, нанесенная на кремневую кислоту. Условия работы аналогичны условиям нри нрпмепении твердой фосфорной кислоты . Однако превращение здесь происходит в жидкой фазе при температуре около 310 и давлении СЗ ат. Жидкий бензол вместе с этиленом, предварительно нагретые в трубчатой печи до температуры реакции, пропускают над катализатором. Продукт из реактора дросселируют примерно до 3,1 ат и в колонне отгоняют из него этилен и избыточный бензол. После компримирования они оба снова проходят через теплообменник и трубчатую печь и вместе со свежим этиленом и бензолом возвращаются в алкилатор. Разгонка продуктов реакции осуществляется аналогично описанной выше. [c.630]

    Сравнивая эту формулу с формулой ряда прёдельных углеводородов С Нз 2, легко видеть, что разность между ними равна 8Н. Следовательно, по химическому составу бензол является сильно непредельным соединением. Однако непредельный характер бен-зо.га не проявляется в типичных реакциях. ЬАы вправе были бы ожидать, что бензол будет вести себя подобно этилену, дивинилу и другим типичным непредельным углеводородам. Однако ока- [c.423]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Анализ литературных материалов показывает, что при окислительном Дегидрировании углеводородов различного строения выход целевых продуктов обычно сравнительно невелик и лищь в редких случаях приближается к теоретическому. Чаще значительная доля сырья расходуется в сопутствующих реакциях окисления и изомеризации, а нередко и в таких побочных процессах,-как деалкилирование, крекинг, циклизация, гидрирование, алкилирование и др. Выще уже отмечался сложный состав продуктов окислительного дегидрирования н-бутиленов. При дегидрировании этилбензола в присутствии воздуха в адиабатическом реакторе (температура газов на входе ж500°С, на выходе 625 °С) на промотированном щелочами окисном железном катализаторе наряду со стиролом (выход 43%) и непрореагйровав-шим этилбензолом (выход 16%) в продуктах реакции обнаружены бензол (3%), толуол (0,4%), метилциклогексан (0,03 /о), диэтилбензол (0,14%), этилен (0,9%), метан (0,5%), водород (0,5%), окись углерода (0,03%) и двуокись углерода 13,1%) [54]. [c.67]

    Механизм термоокислительной деструкции поликарбоната. Для инициирования реакций деструкции поликарбоната на основе дифенилолпропана в отсутствие влаги требуется затрата значительной энергии на разрыв эфирных связей. Поэтому достаточно быстрая термическая деструкция этого полимера происходит при более высоких температурах (400—500°С), чем деструкция полиэтилентерефталата и других полиэфиров. При окислении поликарбоната в указанном температурном интервале обнаруживают [107, 112— 116] в основном те же продукты, что и прн термической деструкцип воду, окись углерода, двуокись углерода, водород, формальдегид, метан, этан, этилен, фенол, крезол, этилфенол, изопропепилфенол, дифенил-карбонат, дифенилолиропан, а также ацетон, бензол, толуол, этилбензол. При термоокислении начальные скорости образования и выход продуктов, как правило, существенно больще, чем при пиролизе. [c.91]



Смотреть страницы где упоминается термин Реакции окиси этилена с бензолом: [c.233]    [c.163]    [c.591]    [c.129]   
Окись этилена (1967) -- [ c.67 , c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции этилена

Этилен окись



© 2025 chem21.info Реклама на сайте