Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны белковые

    Известно много методов для иммобилизации клеток включение в различные гели, например, в полиакриламидный гель, агар, в мембраны из поливинилового спирта или фоточувствительных полимеров, в белковые мембраны, сшитые диальдегидом крахмала адсорбция на различных целлюлозах и крупнопористой керамике ковалентное связывание с активированным силикагелем. [c.166]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Для осуществления гармоничной работы ряда ферментов и регулирующих систем необходима макроструктура, которая могла бы поддерживать молекулы биокатализаторов в определенном взаимном положении. Все детали клетки, на которых размещены ферменты, построены из мембран, содержащих белковые и липидные компоненты. Мембраны не сразу привлекли внимание биофизиков и биохимиков. Лишь мало-помалу раскрылись их необыкновенные свойства и функции. [c.386]

    Биологические мембраны состоят не только из фосфолипидов, они содержат в среднем 60% белков и 40% липидов липидная составляющая включает переменные количества стероидов, преимущественно холестерин (разд. 22.2). Несмотря на сложность состава биологических мембран, простые рисунки, приведенные выше, все еще имеют силу, поскольку белковые [c.339]

    НЫ — это белки с молекулярной массой около 40 000. Родопсин (бычий или овечий) имеет 348 аминокислотных остатков, сгруппированных в виде семи преимущественно гидрофобных сегментов, которые проходят от одной до другой стороны фоторецепторной мембраны. Связь между белковым скелетом и ретиналем формируется при конденсации альдегида с е-группой ли-зинового остатка вблизи конца белковой цепи (на 296 месте в цепи или эквивалентном) с образованием шиффова основания  [c.238]

    Эти пленки изучают в настоящее время особенно интенсивно, поскольку они являются следующей (после обычной пленки) стадией модельного приближения к биологическим мембранам. Согласно современным представлениям клеточные мембраны бимолекулярны и состоят из двух фосфолипидных слоев, обращенных наружу полярными группами, которые связаны с полярными группами полипептид-ной цепи белковых молекул. [c.112]

    Наружная и внутренняя мембраны митохондрий имеют неодинаковую проницаемость для различных веществ. Наружная мембрана легко проницаема для катионов, анионов и небольших незаряженных молекул, Но препятствует проникновению крупных белковых молекул, на- [c.444]


    Гидрофобные а-спиральные участки интегральных белков обычно содержат от 17 до 26 аминокислотных остатков, что вполне достаточно, чтобы полипептидная цепь однократно пересекла М. б. В белках, к-рые пронизывают М. б. насквозь, такие гидрофобные тяжи соединяют между собой полярные области белковой молекулы, находящиеся на противоположных сторонах мембраны. У белков, расположенных только на одной стороне М. б. и погруженных в нее лишь частично, а-спирали служат своеобразным гидрофобным якорем , прочно удерживающим белок в мембране. В нек-рых случаях заякоривание белков в М.б. происходит при помощи ковалентно связанных с ними липидов. [c.29]

    Специфич. взаимод. между отдельными белками приводят к тому, что в М. б. образуются белковые ассоциаты, или ансамбли, к-рые по составу и св-вам отличаются от окружающих участков мембраны и часто окружены липидами определенного типа. Иногда липопротеиновые участки М. б., содержащие характерный набор белков и липидов, удается выделить при фрагментации мембран. Образование ассоциатов белков может происходить также в результате их специфич. связывания на пов-сти М. б. с нек-рыми водорастворимыми белками (напр., с антителами, лектинами) или при фазовом переходе липидов в мембране (обычно белки скапливаются там, где липиды продолжают оставаться в жидкокристаллич. состоянии). [c.30]

    Большое значение имеет применение пористых мембран для электродиализа (см. стр. 38). При достаточно высокой пористости мембран числа переноса ионов в мембранах мало изменяются по сравнению с таковыми в водных растворах так, например, Григоров показал, что число переноса С1- -ионов в коллодийной мембране с размером пор выше 65 ти [X равно 0,504, как и в свободном растворе. В этом случае мембрана является электрохимически неактивной, хотя коллодийные мембраны, как и большинство других мембран, приобретает в растворе электролитов отрицательный заряд (положительный заряд приобретают белковые мембраны). Электрохимически неактивные мембраны лишь отделяют среднюю камеру от электродных камер, препятствуя перемешиванию очищаемого раствора и продуктов электролиза, уносимых с водой. [c.215]

    Принцип гормон-рецепторного комплекса был постулирован уже и начале столетия П. Эрлихом. Рецепторы гормона локализуются или на клеточной поверхности (клеточные мембраны), нли в цитоплазме клетки. Интересующие нас пептидные или белковые гормоны вступают во взаимодействие с рецепторами, связанными с клеточными мембранами. Первое экспериментальное доказательство наличия связанного с мембраной рецептора удалось получить лишь в 1969—1970 гг. при использовании меченых пептидных гормонов (АКТГ, инсулин, ангиотензин) [571—573]. Затем были установлены специфические рецепторы всех гормонов, и гормон-ре-цепторная концепция стала быстро развиваться. Здесь нужно сослаться на прекрасный обзор Любке и сотр. [574], посвященный этому вопросу. [c.234]

    B. Белковые тельца с глобоидами и кристаллоидами (М — единая мембрана БМ — белковый матрикс ГЛ — глобоид Кр — кристаллоид). [c.131]

    Надмолекулярные комплексы мембраны (липопротеиды) клеточные и субклеточные структуры (гликопротеиды) нуклеопротеиды, ферментные и белковые комплексы субклеточные структуры (рибосомы). [c.7]

    Пептидные токсины из ядов змей по числу аминокислот можно отнести к белковым веществам, но их традиционно рассматривают как пептиды. Среди них различают более короткие (по 60-62 АК) и более длинные - до 71-74 АК. Эти токсины, как правило, действуют на мембраны нервных клеток или аксонов, нарушая их нормальное функционирование, но в малых концентрациях, аналогично токсинам пчелиного яда, используются как эффективные лекарственные средства против ряда заболеваний, связанных с нервно-мышечными расстройствами. [c.22]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]

    Некоторые циклические лиганды ( крауны , т. е. короны ) обладают способностью соединяться с ионами щелочных металлов за счет ион-дипольных взаимодействий. Такие лиганды, называемые также ионофорами, в настоящее время хорошо изучены. К ним относится, например, антибиотик валиномицин (полипептидного типа), молекула которого представляет собой почти плоское кольцо Его диаметр соответствует размерам иона калия (негидратирован-ного). Поэтому валиномицин связывает ионы калия (но не натрия) и может перемещаться с ними как одно целое. Такие комплексы способны переходить через липидно-белковые слои и, следовательно, валиномицин может обеспечить специфический перенос ионов калия через мембраны. Это имеет существенное значение в механизме действия антибиотиков. Ионы других щелочных металлов связываются валиномицином в меньшей степени. Антибиотик грамицидин может переносить и ионы калия, и ионы натрия. [c.153]


    Поглощение катионов двухвалентных металлов сопровождается выделением эквивалентного количества протонов из мембраны, так что фактически мембрана (ее связывающие единицы) обменивают протоны на катионы металлов. Перенос ионов приводит к проникновению воды, и митохондрия набухает набухания не происходит, если ионы связываются неорганическим фосфатом и образуют осадок. Одновалентные ионы калия и натрия способны и пассивна проникать во внутреннее пространство, если имеются анионы и субстрат этот процесс также ведет к набуханию митохондрии. В процессе переноса через мембрану, например, аниона фосфорной кислоты, он прежде чем войти в белково-липидный слой мембраны, превращается в нейтральную частицу (лучшая растворимость в липидной среде). По этой причине протоны вместе с анионами также переносятся из внешней во внутреннюю зону. Работа митохондрий по созданиго макроэргических связей не ограничивается образованием только АТФ первичные продукты деятельности аппарата сопряжения, поставляющие активные богатые энергией вещества и для транслоказы, и для образования НАДФ-Нг, и для синтеза АТФ, мало исследованы, хотя работы по их изучению ведутся интенсивно. [c.390]

    Большой интерес для биологии представляют пленки, образованные двумя или несколькими компонентами (не считая молекул подложки). К ним относятся, например, пленки, образованные двумя нерастворимыми в воде, но взаимно растворимыми веществами ( нерастворимые растворы ), а также пленки, состоящие из нерастворимого вещества и растворимого ПАВ, например, исследуемые Зонтагом (ГДР) ПАВ-полимерные пленки и липиднопротеиновые пленки. Последние изучают в настоящее время особенно интенсивно, поскольку они являются следующей (после обычной пленки) стадией модельного приближения к биологическим мембранам. Согласно современным представлениям, клеточные мембраны бимолекулярны и состоят из двух фосфолипидных слоев, обращенных наружу полярными группами, которые связаны с полярными группами полипептидной цепи белковых молекул. [c.112]

    В связи с вышеизложенным следует обратить внимание на имеющиеся в литературе данные о том, что из яда кобры выделены белковые компоненты, которые, действуя на мембраны опухолевых клеток, разрушают последние, в то же время не затрагивая нормальных клеток (Bragan a, 1971). Поэтому вопрос о возможности применения змеиных ядов в противоопухолевой терапии, но-видимому, нуждается в дополнительных исследованиях. [c.176]

    Каким же образом белковый токсин такого типа проникает в клетку Имеются основания считать, что структура одно.-го нз участков белковой молекулы обладает способностыб связываться с определенными участками клеточной, мембраны. Возможно, что связывание в этих участках стимулирует [c.305]

    В высших организмах присутствует белковый комплекс, осуществляющий специфич. перенос через биол. мембраны АТФ в обмен на АДФ (транслоказа адениновых нуклеотидов) и являющийся первым хорошо изученным белком-пе-реносчиком. Особая роль аденозин-5 -фосфорных к-т в биоэнергетике обусловливает то, что эти соед. являются также аллостерич. регуляторами ряда ключевых ферментов. [c.34]

    В механизме действия П. (как и мн. др. пептидно-белковых гормонов) на его начальном этапе принимают участие специфич. рецептор плазматич. мембраны клетки-мишени, аденилатциклаза, циклич. аденозинмонофосфат (цАМФ) и протеинкиназа. Активация аденилатциклазы (при воздействии П. на рецептор) приводит к образованию внутри клеток цАМФ, к-рый активирует фермент протеинкиназу, осуществляющую фосфорилирование функционально важных белков, и таким образом запускает ряд биохим. р-ций, обусловливающих в конечном счете физиол. эффект гормона. [c.446]

    Поскольку мембранные белки легко денатурируют, их довольно. долго не удавалось выделить и изучить. Преодолеть эти трудности помогло использование принципиально новых подходов. Оказалось, что )яд белков можно солюбилизировать с помощью детергентов. Например, родопсин — светочувствительный пигмент и основной белковый а<омпонент наружных члеников палочек сетчатки — может быть полу- чен в солюбилизированном виде, в котором он нормально обесцвечивается на свету (гл. 13, разд. Е). Несколько ферментов удалось выделить из мембран и очистить фракционированием в органических растворителях, например в метаболе. Мембранные белки обычно нерастворимы в воде. Однако мембраны эритроцитов удалось практически полностью солюбилизировать в воде, используя хелатобразующий агент ЭДТА в концентрации 5-10 М (табл. 4-2) или 0,1 М тетраме-тиламмонийбромид [27]. Результаты этих опытов указывают, что в поддержании стабильности мембран важную роль играют ионные взаимодействия между белками (или между белками и фосфолипидами).  [c.352]

    Большое значение имеют эластичные гели в форме тонких мембран. В живом организме различные белковые, белковолипоидные и другие мембраны способствуют избирательному поглощению и переносу различных веществ, про- [c.212]

Рис. 2-51. Предполагаемый принцип взаимодействия антаманида с биомембраной [818]. Заштрихованы области белкового компонента мембраны. Рис. 2-51. Предполагаемый <a href="/info/582637">принцип взаимодействия</a> <a href="/info/106140">антаманида</a> с биомембраной [818]. Заштрихованы области <a href="/info/1306686">белкового компонента</a> мембраны.
    В процессе ультрафильтрации животных белковых растворов происходит формирование примембранных белковых отложений, прочно связываемых с поверхностью мембраны. [c.569]


Смотреть страницы где упоминается термин Мембраны белковые: [c.159]    [c.423]    [c.340]    [c.102]    [c.23]    [c.15]    [c.118]    [c.258]    [c.270]    [c.247]    [c.124]    [c.30]    [c.327]    [c.340]    [c.353]    [c.71]    [c.410]    [c.569]    [c.569]    [c.557]    [c.435]    [c.609]   
Микробиология Издание 4 (2003) -- [ c.62 ]

Учение о коллоидах Издание 3 (1948) -- [ c.317 ]

Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.36 , c.42 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.39 , c.42 ]

Химия и биология белков (1953) -- [ c.215 ]




ПОИСК







© 2025 chem21.info Реклама на сайте