Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эксиплекс

    Зависимость квантовых выходов флуоресценции ароматического соединения (фо, ф) и эксиплекса (ф ) от концентрации тушителя описывается уравнениями  [c.81]

    Идеи, изложенные в настоящей главе и гл. 5, имеют важное значение не только при рещении структурных задач с электронными переходами связаны явления флуоресценции и фосфоресценции. В фотохимических реакциях участвуют электронно возбужденные молекулы, и для того, чтобы разобраться с механизмами этих реакций, необходимо иметь представление о структуре и реакционной способности возбужденных частиц. В некоторых случаях синглет-триплетное возбуждение молекул приводит к образованию реакционноспособных радикалов. Часто молекулы, не способные к образованию комплекса, находясь в основном состоянии, приобретают такую способность, если одна из молекул возбуждена (такой комплекс называется эксиплексом). Таким образом, идеи, касающиеся электронных переходов, изложенные в настоящей главе и гл. 5, важны для многих областей. [c.123]


    Второй тип связи в возбужденных комплексах — донорно-ак-цепторная связь, обусловленная переносом заряда между компонентами комплекса. Волновая функция такого комплекса, который называется эксиплексом, является комбинацией волновых функций [c.79]

    Это, например, процессы с участием эксимеров, эксиплексов, процессы переноса протона. Такие процессы часто сопровождаются индуцированной безызлучательной дезактивацией  [c.91]

    II эксиплекса. Строят графики зависимости фо/ф и ф7ф от Ю] и кинетические кривые в координатах /—1, gI —Из кинетических кривых находят Оь О2 и 6. Откладывают зависимость А и <>2 от [О] в координатах х — у (см. рис. 33). Из полученных данных рассчитывают константы скорости процессов, используя уравнения (IV.27) — (IV.29) и (IV.34) — (1У.44) и принимая [c.117]

    Электронно-возбужденные молекулы могут реагировать с невозбужденными с образованием комплексных соединений (эксиплексов), существующих только в возбужденном состоянии. [c.290]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]

    Фотохимический механизм с образованием бирадикала отличается от своего термического аналога. В термической реакции первоначально образующийся бирадикал должен быть синглетным, а в фотохимическом процессе происходит присоединение молекулы в триплетном возбужденном состоянии к субстрату, находящемуся в основном состоянии (которое, естественно, представляет собой синглет). Поэтому для сохранения спина [746] первоначально образующийся бирадикал должен быть триплетным, т. е. два электрона должны иметь одинаковый спин. Следовательно, вторая стадия этого механизма — стадия циклизации — не может осуществляться сразу же, так как новая связь не мол<ет образоваться ири участии двух электронов с параллельными спинами, и время жизни бирадикала должно быть достаточно велико, чтобы в результате столкновений с окружающими молекулами произошла инверсия спина, после чего бирадикал циклизуется. Согласно этой схеме, реакция должна быть нестереоспецифична, что и обнаружено (см., например, [747]). По крайней мере некоторые из фотохимических реакций [2 + 2]-циклоприсоединения идут через образование эксиплексных интермедиатов [748] [эксиплекс [749]—это возбужденный донорно-акцепторный комплекс (т. 1, разд. 3.1), который диссоциирует в основном состоянии в этом случае один олефин является донором, а другой — акцептором]. [c.261]


    Образование эксиплексов проявляется в том, что в спектрах флуоресценции ароматических соединений в присутствии тушителей, доноров или акцепторов электрона появляется новая полоса, смешенная в длинноволновую сторону. Никаких изменений в спектре поглощения не обнаруживается. [c.80]

    Рассмотрим определение константы скорости образования эксиплексов антрацена с диэтиланилином в гексане  [c.80]

    Исследования с временным разрешением ясно показывают эволюцию как эксимерных, так и эксиплексных систем. Вслед за возбуждающим световым импульсом наблюдается коротко-живущая (около 1 нс) эмиссия от изолированной молекулы. Однако через 10 нс начинает появляться излучение эксимера или эксиплекса, и через промежуток времени более 100 нс после импульса спектр излучения становится неразличимым со спектром излучения при непрерывном облучении. Скорость, с которой возникает излучение комплекса, близка к скорости диффузии возбужденных частиц через растворитель к своему партнеру. [c.133]

    Характер связей в эксимерах и эксиплексах явно зависит от наличия электронного возбуждения. Частично комплекс стабилизируется за счет перехода электрона с заполненной орбитали, которая должна быть разрыхляющей в основном состоянии димера или комплекса, на незаполненную связывающую орбиталь возбужденной пары. Стабилизация за счет переноса заряда также важна в эксимерах и особенно в эксиплексах. Обычно возбужденные частицы в эксиплексах являются лучшими донорами и акцепторами электрона, чем те же частицы в основном состоянии (см. гл. 6). При переходе электрона на более высокий энергетический уровень возбужденная молекула становится потенциально лучшим донором, чем в основном состоянии. Однако вакантное место может занять другой электрон, что приводит к увеличению акцепторных свойств. [c.133]

    Если процесс протекает согласованно, что необходимо для стереоспецифичности, то ограничения по орбитальной симметрии должны быть смягчены, поскольку эта реакция является запрещенной для возбужденного синглета бензола и основного состояния алкена. Одно допущение состоит в том, что присоединение происходит в эксиплексе. 1,4-Присоединение встречается гораздо реже, но и оно стереоспецифично и, возможно, также происходит через эксиплексное взаимодействие. [c.172]

    Кинетика образования эксиплексов [c.224]

    Изучение кинетики образования эксиплексов. Кинетика образования возбужденных комплексов — эксиплексов описывается уравнениями (IV.32) и (IV.33) . Для исследования можно рекомендовать различные ароматические углеводороды (нафталин, пирен, антрацен, перилен и др.) в присутствии доноров (триэтиламин, диэтиланилин) или акцепторов (1,4-дицианобензол) электрона в углеводородных растворителях. Приготовляют серию 10- М растворов ароматического углеводорода в гептане с различными концентрациями комплексообразователя (О—0,5 моль/л). Растворы обезгаживают в специальных кюветах (см. рис. 41) и измеряют [c.116]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Образование триплетных эксиплексов было обнаружено в полярном растворителе — ацетонитриле между радикалами акридина, азафенантреиа и катион-радикалами доноров электрона (дифенила, нафталина, нафтола). Такие эксиплексы образуются в результате реакции переноса электрона с донора на возбужденные катионы гетероароматических соединений. Спектры поглощения наблюдаемых триплетных эксиплексов являются суммой спектров свободных радикалов акцептора и катион-радикалов донора (рис. 65). Прочность данных триплетных эксиплексов в основном определяется не кулоновским, а обменным взаимодействием, поскольку они наблюдаются в полярной среде. [c.178]

    Излучение эксиплекса наблюдается в растворах смешанных растворителей. Например, флуоресценция антрацена тушится диэтиланилином, при этом в более длинноволновой области возникает новое бесструктурное излучение. Это излучение является не сенсибилизированной флуоресценцией диэтиланилина, а излучением комплекса, образованного возбужденным сннглет-ным антраценом и диэтиланилином. [c.133]

    Таким образом, в возбужденной паре (MN) может возникнуть электростатическое взаимодействие между М+ и N направление перехода электрона зависит от химических особенностей взаимодействующих частиц. Эксиплексы имеют большие ди-польпые моменты из-за характера связывания при переносе заряда, и их спектр излучения зависит от диэлектрической проницаемости растворителя. При образовании эксимеров дипольный момент не возникает, поскольку две молекулы, составляющие эксимер, одинаковы. Однако резонанс между структурами M+M п М М+ в какой-то степени стабилизирует комплекс за счет переноса заряда. [c.134]


    Рассмотрение эксимеров и эксиплексов в разд. 5.4 указывает и другой путь получения инверсии заселенности. Поскольку время жизни основного состояния образующей комплекс пары не превышает одного периода колебания, его заселенность пренебрежимо. мала. Образование возбужденного комплекса неизбежно обеспечит большую заселенность, чем гипотетического основного состояния, и действие лазера становится возможным. Эксимерные лазеры работают по тому же принципу, хотя для некоторых напболее важных примеров, основанных на системах благородный газ — галоген, точнее подходило бы название экснплексные . Аргон, криптон и ксенон образуют эксиплексы с атомами Р и С1 (так же как Хе с Вг). Можно получить лазерное излучение в вакуумной УФ-области, с наиболее короткой длиной волны А=175 нм для АгС1. Первоначальное возбуждение происходит в форме электрического разряда, и последовательность реакций можно записать как [c.146]

    Реакционноспособное состояние в больщинстве случаев является триплетным, что объясняет большую легкость фотоцикли-ческого присоединения циклических енонов по сравнению с их ациклическими аналогами. Снижение подвижности циклических соединений ингибирует интеркомбинационную конверсию до основного состояния, которое быстро дезактивирует колебательные триплетные состояния ациклических енонов. Эти реакции нестереоспецифичны. Однако некоторые ориентации в продуктах предпочтительны, возможно, из-за геометрии эксиплекса, который образуется в первой стадии взаимодействия [c.172]

    Кинетические исследования исходят из количественного образования некоторых промежуточных соединений триплета сенсибилизатора при концентрациях кислорода выще 10 моль/ /дм . Сами интермедиаты количественно поглощаются хорошими акцепторами, хотя со многими соединениями, например со спиртами, они не реагируют. Имеются две интерпретации этих фактов интермедиатом являются 1) комплекс кислорода с сенсибилизатором и 2) электронно-возбужденный кислород, образованный при переносе энергии от сенсибилизатора к кислороду. Возможно, обе интерпретации допускают образование аддукта ( эксиплекса ) между возбужденными сенсибилизатором и кислородом, хотя стабильный эксиплекс получается только по первому механизму  [c.174]

    Поскольку тииловый радикал беден электронами, он является хорошим инициатором для богатых электронами мономеров типа виниловых эфиров (лучше чем для бедных электронами акрилатов). Эти реакции лежат в основе процесса с участием тиольных групп и двойных связей. Для фотоинициирования широко используются системы кетон — амин. Кетон в триплетном возбужденном состоянии и амин образуют эксиплекс (вероятно, комплекс с переносом заряда), который распадается на радикалы при переносе протона  [c.260]

Рис. 4.6. Кинетика флуоресценции ароматических углеводородов ( ) эксиплексов (2) в системах а—в — пирен, дизтиланилнн в гептане (концентрация диэтиланилина в а — 0,003 М в — 0,03 М) и г—е — перилен, диэтиланилин в гептане (г — 0 й — 0,3 М е — 0,88 М) Рис. 4.6. <a href="/info/1387322">Кинетика флуоресценции</a> <a href="/info/7163">ароматических углеводородов</a> ( ) эксиплексов (2) в системах а—в — <a href="/info/9758">пирен</a>, дизтиланилнн в гептане (концентрация <a href="/info/36905">диэтиланилина</a> в а — 0,003 М в — 0,03 М) и г—е — перилен, <a href="/info/36905">диэтиланилин</a> в гептане (г — 0 й — 0,3 М е — 0,88 М)
    Кинетика образования возбужденных комплексов с переносом заряда — эксиплексов — описывается уравнениями (4.45) — (4.55), только вместо - [Р] подставляют к-. Готовят раствор пирена в гептане (Ю- М) с добавкой 1,4-дицианбензола (О, 2, 4, 6, 8-10 2 М). Измеряют спектры флуоресценции при возбуждении светом 350 нм и кинетику флуоресценции в полосе пирена (390 нм) и эксиплекса (500нм). Полученные данные представляют в координатах Р—1 и gF —t и, используя уравнения (4.45) — (4.60), находят константы входящих в кинетическую схему процессов, приняв к2< к.  [c.224]

Рис. 6.10. Спектры поглощения комплекса (триплетного эксиплекса) 9-фенилакридиниевого радикала с катион-радикалом дифенила (/), свободного 9-фени-лакридинового С-радикала (2) и свободного катиои-радикала дифенила (3) Рис. 6.10. <a href="/info/2753">Спектры поглощения</a> комплекса (триплетного эксиплекса) 9-фенилакридиниевого радикала с катион-радикалом дифенила (/), свободного 9-фени-лакридинового С-радикала (2) и свободного катиои-радикала дифенила (3)
    ИМПУЛЬСНЫЙ ФОТОЛИЗ, метод исследования быстрых хим. р-ций и их короткоживущих продуктов (время жизни от долей до 10" с), основанный на возбуждении молекул мощным световым импульсом. Сочетает возможность мгновенного (за время светового импульса) получения активных частиц с регистрацией их во времени. Возбуждение осуществляется светом импульсной лампы за Ю - — 10 с или лазерами за 10" — 10 с. Наиб, распростр. методы регистрации — спектрофотометрич. (осцил-лографич.) и спектрографический с помощью спектров поглощения в видимой и УФ областях. Спектрофотометрич. регистрация совместно с примен. приемов увеличения отношения сигнал/шум позволяет исследовать короткоживу-щие частицы с конц. до 10 моль/л. Для регистрации примен. также методы люминесценции, ЭПР, масс-спектрометрии и кондуктометрии. С помощью И. ф. изучены св-ва большого числа нестабильных своб. радикалов, ионов, ион-радикалов, триплетных состояний, эксимеров и эксиплексов исследуются механизмы фотохим. и фотобиол. процессов. В квантовой электронике И. ф. примен. для изучения роли триплетных состояний в процессах генерации, а также для исследования механизма фотодеструкции и нахождения путей фотостабилизации молекул активных сред в жидкостных лазерах. [c.218]


Библиография для Эксиплекс: [c.116]   
Смотреть страницы где упоминается термин Эксиплекс: [c.179]    [c.314]    [c.425]    [c.117]    [c.176]    [c.179]    [c.132]    [c.132]    [c.196]    [c.304]    [c.306]   
Основы и применения фотохимии (1991) -- [ c.132 ]

Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.266 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.266 ]

Фото-люминесценция растворов (1972) -- [ c.341 ]

Электроны в химических реакциях (1985) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Образование эксиплекса

Эксимеры и эксиплексы



© 2025 chem21.info Реклама на сайте