Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электронный химический

    Химический механизм в виде проходящей на одном и том же участке поверхности в одну стадию и независящей от потенциала металла химической реакции без участия свободных электронов, когда металл, отдавая окислителю валентные электроны, вступает с ним в химическое соединение или образует ионы, может иметь место и в электролитах  [c.180]

    Если в кристалле имеются донорные или акцепторные примеси (иапример, изоморфно замещающие ионы в узлах кристаллической решетки), то в объеме и на поверхности полупроводника появляются избыточные электроны в зоне проводимости или избыточные дырки в валентной зоне и соответствующие локальные уровни энергии внутри запрещенной зоны. В зонной теории относительное количество электронов и дырок в полупроводнике характеризуется так называемым уровнем энергии Ферми (или просто уровнем Ферми), который имеет смысл химического потенциала электрона в полупроводнике. [c.454]


    Так как изменение состава амальгамы приводит к изменению химического потенциала электрона (т. е. р, фЦе ""), то Лс ф =Дси" Ф-Суммируя все гальвани-потенциалы в рассматриваемой цепи, получаем для э. д. с. следующее простое выражение  [c.124]

    Все или большая часть валентных электронов металла образуют ненасыщенные химические связи (см. 7). В этом смысле валентные электроны металла подобны электронам в зоне проводимости полупроводника и отсюда понятно, что большинство металлов по данным эффекта Холла обладают электропроводностью/г типа. Поэтому, электрохимический потенциал электронов в металле может быть записан следующим образом  [c.169]

    Очевидно, что термодинамическая концентрация валентных электронов (т. е. ненасыщенных химических связен) у всех металлов весьма велика и должна быть близка к единице. Поэтому уровень электрохимического потенциала электронов в металле практически совпадает с уровнем их полной потенциальной энер- [c.170]

    Механизм действия многочисленных полупроводниковых катализаторов, как показал Ф. Ф. Волькенштейн, существенно зависит от положения уровня Ферми (т.е. усредненного значения химического потенциала электрона в полупроводнике). Частицы на поверхности катализатора связаны с ней одноэлектронной или более прочной-—двухэлектронной связью. Чем выше уровень Ферми, тем больше доля частиц, несущих отрицательный заряд, и тем меньше доля частиц, связанных с поверхностью донорной связью, т. е. положительно заряженных. Число нейтральных частиц при изменении уровня Ферми проходит через максимум. Таким образом электронные свойства полупроводника определяют возможные состояния частиц на его поверхности и, следовательно, и направление химических процессов между ними. Влияние дефектов или примесей также зависит от того, как отзывается их появление иа положении уровня Ферми. [c.322]

    Найдем химический потенциал электронов при Г > О, для чего используем формулу (УП1.23). В знаменателе, в правой части, оставим только знак плюс и сделаем замену  [c.192]

    В реальных полупроводниках очень часто собственная проводимость соизмерима с примесной. Имеются полупроводники, в которых одновременно содержатся акцепторные и донорные примеси. Такой общий случай и рассмотрен ниже. Задача состоит в нахождении энергии Ферми (химического потенциала электронов), а также концентрации электронов проводимости и дырок для полупроводника при заданных условиях. [c.195]

    Основываясь на формуле (УП1.94), найдем значение химического потенциала электронов при низких температурах, когда [c.201]


    Химический потенциал электронов, отсчитываемый от верхнего края валентной зоны, определится выражением [c.201]

    Создание перехода между материалами п- и р-типов приводит к новым свойствам, которые делают возможной твердотельную электронику. Поскольку химический потенциал электронов должен быть одним и тем же по обе стороны перехода, получается, что уровни зоны проводимости и валентной зоны материала р-типа должны сместиться в сторону больших энергий. [c.274]

    Рассмотрим, что произойдет, если два металла с различными ионизационными потенциалами приведены в контакт между собой (рис. 36). Так как верхний заполненный энергетический уровень металла / на этом рисунке расположен выше, чем соответствующий уровень энергии металла 2, электроны с металла 1 будут перетекать на металл 2. Этот переход будет продолжаться до тех пор, пока верхние заполненные уровни энергии электронов в обоих металлах не выровняются. Тогда вероятность перехода электронов от металла 1 к металлу 2 и обратно станет одинаковой. Но при этом металл / с меньшим потенциалом ионизации получит положительный заряд, а металл 2 приобретает равный по величине отрицательный заряд. На границе между металлами возникнет разность потенциалов, т. е. гальвани-потенциал. Он не совпадет по величине с разностью ионизационных потенциалов металлов и вообще не может быть определен или же рассчитан какими бы то ни было доступными средствами. Причина этого состоит в том, что при переходе электронов от одного металла к другому помимо электрической производится работа, обусловленная разностью химического потенциала электрона в обеих фазах. [c.50]

    Потенциал ионизации. Сродство к электрону. Химическая активность элемента определяется способностью его атомов терять или приобретать электроны. Количественно это оценивается энергией ионизации Енон атома (или потенциалом ионизации /) и его сродством к электрону ср. [c.48]

    Уровень Ферми по существу представляет собой электрохимический потенциал электрона, в металле [4]. Пользуясь известной свободой в выборе стандарт-] ного состояния и в разделении химического потенциала на химическую и электрическую части, которое не может быть сделано термодинамическими методами, но рационально с точки зрения атомистических представлений, запишем выражение для химического потенциала электронов в металле следующим образом  [c.99]

    Электроны перетекают из сжатых областей в растянутые так, что уровень Ферми (химический потенциал электронов) является везде одинаковым. В результате растянутые области приобретают избыточный отрицательный заряд, а сжатые — положительный. Возникающий потенциал точно компенсирует локальное искажение уровня Ферми, вызванное деформацией. [c.11]

    Поскольку химический потенциал электрона можно представить равенством [c.23]

    Энергия Ферми — электрохимический потенциал электронов, которым определяется их способность перемещаться вблизи поверхности раздела, подобно тому как химический потенциал отражает способность перехода вещества из одной фазы в другую. [c.589]

    Если в правильно разомкнутой электрохимической цепи (см. рис. VI.2,а) на всех трех фазовых границах М1—Мг, Мг—раствор и раствор — М] имеет место электронное равновесие, определяемое равенством электрохимических потенциалов электрона в этих фазах, то на первый взгляд кажется непонятным, за счет чего возникает ЭДС цепи, равная разности в двух частях одного и того же металла Мь Анализ этой проблемы показывает, что электрохимические потенциалы электрона в двух областях одного и того же раствора вблизи металла М1 и вблизи металла М2 — не одинаковы. В самом деле, выше было показано, что равновесная концентрация электронов в абсолютно чистой воде у поверхности медного электрода равна 9,36моль/л. Аналогичный расчет показывает, что в абсолютно чистой воде у поверхности цинкового электрода [е ] =2,31 10 моль/л. Следовательно, в воде между двумя электродами имеет место градиент концентрации гидратированных электронов. Как следует из уравнения (IV.34), градиент концентрации сольватированных электронов возникает в любом растворе, если только не равны друг другу электродные потенциалы двух металлов. Поэтому, строго говоря, разомкнутая электрохимическая цепь, ЭДС которой не равна нулю, не является равновесной даже при наличии равновесия на всех ее фазовых границах. Чтобы строго определить равновесную электрохимическую цепь, кроме условия электрохимического равновесия на каждой фазовой границе дополнительно указывают, что ЭДС цепи скомпенсирована разностью потенциалов от внешнего источника тока (см. с. 116). При подключении этой внешней разности потенциалов происходит компенсация электрическим полем градиента химического потенциала электронов в электролите, так что и в растворе при этом Ар,1,=0. Отсюда следует, что ЭДС электрохимической цепи можно представить как разность величин вблизи двух электродов и ввести определение отдельного электродного потенциала как реальной свободной энергии сольватации электрона (выраженной в эВ) при электронном равновесии электрода с раствором. [c.138]


    Таким образом, электрохимический потенциал электрона в металле отражает его полную энергию на уровне Ферми при Г=ОК, а химический потенциал объединяет кинетическую энергию на уровне Ферми ер и обменную составляющую потенциальной энергии Уобм. [c.190]

    В металлических фазах носителем электричества являются электроны, химический потенциал которых це в каждом металле можно считать постоянным при Т = onst, вследствие чего разности потенциалов между двумя соприкасающимися металлами постоянны (при 7" = onst). [c.499]

    Уровень Ферми, по определению, есть химический потенциал электронов в твердом теле. Для металлов в то же время это энергия наиболее высокого электронного уровня, занятого при Г = 0. В случае полупроводников и изоляторов (см. 6) уровень Ферми лежит внутри зоны разрыва, и равенство (VIII.46) определяет значение Е/ неодиазначно. [c.187]

    Пусть Ро — химический потенциал электронного газа в данном металле при Т — 0. Из формулы (VIII.9), положив в ней Т = 0, найдем [c.189]

    Таким образом, в собственном полупроводнике значение химического потенциала электронов (уровня Ферми) находится приблизительно посредине запрещенной зоны. Если отноишние тУт близко к единице, положе1П1е уровня Ферми практически не зависит от температуры. [c.200]

    Электроны перетекают из сжатых областей в растянутые так, чтобы уровень Ферми (химический потенциал электронов) был везде одинаковым. В результате растянутые области приобре- [c.12]

    Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализо-ванные электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состоящий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла. Одновременно изменяется структура френкелевского двойного слоя вследствие частичного ухода в металл внешних электронов и в связи с этим уменьшается тормозящий выход электронов из металла скачок потенциала, а следовательно, уменьшается работа выхода электронов (уровень химического потенциала электронов внутри металла сохраняется). [c.98]

    Таким образом, если внутри объема металла локальные деформационные изменения химического потенциала электронов аннулируются путем перераспределения электронной плотности за счет соседних больших объемов с возникновением локальных потенциалов деформации, то в тонком поверхностном слое в окрестности дислокационных скоплений эти изменения компенсируются эквивалентным из-1 менением энергии внешних электронов френкелевского двойного слоя, в резуль- тате чего восстанавливается уровень Ферми, но изменяется работа выхода электрона и, следовательно, сдвигается нулевая точка металла в сторону отрицатель- ных значений на величину потенциала деформации с образованием внутреннего двойного слоя в металле. [c.102]

    Одновременно изменяется структура френкелевского двойного слоя вследствие частичного ухода в металл внешних электронов и в связи с этим уменьшается тормозящий выход электронов из металла скачок потенциала, а следовательно, уменьшается работа выхода электронов (уровень химического потенциала электронов внутри металла сохраняется). [c.101]


Смотреть страницы где упоминается термин Потенциал электронный химический: [c.254]    [c.217]    [c.181]    [c.287]    [c.176]    [c.384]    [c.192]    [c.196]    [c.274]    [c.230]    [c.242]    [c.99]    [c.99]    [c.100]    [c.102]    [c.102]    [c.102]    [c.12]    [c.23]    [c.225]   
Химический анализ (1966) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал химическии

Потенциал химический

Потенциал электронный

Химический потенциал электрона

Химический потенция



© 2025 chem21.info Реклама на сайте