Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монослои поверхностные потенциалы

    Следовательно, при даннрй температуре плотность адсорбата пропорциональна давлению газа. Такое соотношение известно под названием закона Генри. Закон Генри является простейшей формой изотермы адсорбции. Он справедлив для области низких давлений газа или для высоких температур, т. е. для условий, когда адатомами покрыта лишь малая часть поверхности. Теоретические модели адсорбции, развитые Хуангом [160] и Хобсоном [181], построены на основе статистической теории для невоз мущенных газов при использовании для описания взаимодействия, газ — твердое тело потенциала Кирквуда — Мюллера. Первый из авторов пред полагал поверхность однородной, тогда как второй рассматривал возможность варьирования анергий адсорбции для конкретных поверхностныл состояний. Для области сверхвысокого вакуума оба подхода приводят к выражениям, эквивалентным закону Генри. При повышенных давлениях большая плотность адатомов вызывает отклонение от этого простого линейного соотношения. Для описания различных наблюдаемых на опыте изотерм адсорбции было предложено множество эмпирических выражений (см., например, работы Дэшмана [182] и Трепнелла 1175]). Среди прочих фундаментальное значение имеют изотермы Ленгмюра, поскольку при их выводе была впервые использована концепция мономолекулярного слоя адсорбированных частиц, образующихся вследствие короткодействующей природы поверхностных сил [ 83]. В основу изотерм Ленгмюра положены физические предположения о том, что все поверхностные состояния имеют одинаковые энергии адсорбции, что адатомы не взаимодействуют друг с другом и что на одно состояние может аккомодироваться только один атом или молекула. Поэтому должен существовать максимум числа адатомов, образующих плотно упакованный монослой. Число частиц в таком полностью заполненном слое зависит от диаметра адсорбированных частиц. Для Н 0, СН4 и СОа та величина равна приблизительно 5.10 см , для СО, О, N2 и Аг—8 10 см , а для На и Не — около 2-10 СМ-. Ленгмюровские изотермы получаются в предположении равенства скоростей адсорбции и десорбции. В этом случае скорость десорбции, приведенная к одному квадратному сантиметру площади поверхности, равна [c.224]


    Спектрометрия рассеяния ионов низких энергий (рассеяния медленных ионов, РМИ) занимает особое место среди методов анализа поверхности, поскольку рассеяние происходит исключительно на первом атомном слое поверхности образца. Так происходит потому, что ионы благородных газов низких энергий, проникая в твердое тело, нейтрализуются (вследствие их высокого потенциала ионизации) при неупругих электронных взаимодействиях. Таким образом, можно зарегистрировать только те ионы, которые претерпевают упругие столкновения непосредственно на поверхности твердого тела. РМИ является единственным методом, чувствительным к верхнему монослою, независимо от того, какие атомы находятся в глубине образца. Монослойной чувствительности в других методах можно достичь только в том случае, если поверхностный слой отличается по составу от нижележащих слоев (например, пленка адсорбированных молекул на металлической поверхности). [c.354]

    Цель работы. Получить зависимость поверхностного потенциала от площади, приходящейся на одну молекулу в монослое. Проследить влияние двойных связей в молекуле на величину и изменение поверхностного потенциала. [c.70]

    Сущность работы. Возникающая между металлической пластинкой над поверхностью монослоя и водным раствором электролита электродвижущая сила называется поверхностным потенциалом. Величина последнего служит характеристикой фазового состояния монослоя. Поэтому по результатам измерения поверхностного потенциала можно судить о состоянии монослоя и даже о структуре молекул, образующих монослой. [c.70]

    О взаимодействии между ориентированными на границе раздела молекулами монослоя и веществами, растворенными в объеме жидкой фазы, можно судить по изменению свойств монослоя — его поверхностного давления, площади при постоянном поверхностном давлении и поверхностного потенциала. Шульман с сотрудниками установили, что введение под монослой некоторых веществ в виде разбавленного раствора приводит к изменению поверхностного потенциала, что обусловлено взаимодействием между двумя разными типами молекул. Если силы вандерваальсового притяжения между неполярными частями обоих соединений достаточно велики, введенное вещество быстро проникает через монослой, независимо от начального поверхностного давления, причем образуется смешанный монослой, содержащий оба соединения в определенном стехиометрическом соотношении [59]. [c.308]


    Вс-вторых, авторы предположили, что в растворах, содержащих добавки, поверхностный потенциал раствора полностью определяется присутствующим в нем поверхностно-активным веществом и практически не зависит от концентрации НС1. Такой нивелировке поверхностного потенциала в работах [16, 98J даются два возможных объяснения либо одновременно с образованием монослоя молекул поверхностно-активного вещества на границе раздела раствор/воздух происходит разрушение двойного электрического слоя, обусловленного адсорбцией молекул НС1, либо указанный монослой полностью экранирует адсорбционный слой, образованный молекулярными диполями H I. Если предположение о стабилизации поверхностного потенциала правильно, то изменения компенсирующего напряжения цепи (3.54) в зависимости от концентрации НС1 будут целиком определяться изменением химической активности ионов водорода ajj+> которая в этом случае может быть получена по результатам измерений. [c.81]

    В пользу возможности протонной проводимости на границе раздела водной фазы с полярной частью фосфолипидного бислоя свидетельствуют данные о латеральной протонной проводимости на границе липидного бислоя с водой. Вдоль монослоя из фосфатидилэтаноламина создавался градиент pH и измерялась продольная скорость переноса протона путем регистрации флюоресценции меченого в полярной головке фосфолипида. Одновременно производили измерения поверхностного потенциала и поверхностного давления. Показано, что протон движется вдоль монослоя липида в том случае, если этот монослой организован и упорядочен. Скорость переноса значительно превышала скорость диффузии протонов в воде. Эффект был обнаружен в монослоях из большинства природных фосфолипидов. Полная дегидратация фосфолипидов в полярной области приводила к потере протонной проводимости. Авторы предполагают, что молекулы воды на границе раздела липид-раствор образуют четыре слоя объемный слой раствора, слой гидратной воды, молекулы воды в котором непосредственно взаимодействуют с полярными группами молекулы липида слой молекул воды, связанный водородной связью с молекулами липида на уровне карбонильной группы, и, наконец, трансмембранные водные мостики. В целом на поверхности липидного бислоя образуется сеть водородных связей, обеспечивающих быстрый перенос протонов. Предполагается при этом, что протоны, передвигающиеся в системе водородных связей на поверхности бислоя, не смешиваются с протонами объемного слоя воды. Таким образом, возможен мембранный обмен протонами между протонными каналами и протонными насосами, минуя раствор электролита, омывающего мембрану. Кроме того, молекулы липида в кромке липидной поры способны, как показано в последнее время, участвовать в 64 [c.64]

    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]

    Адсорбционная теория в возникновении пассивного состояния металла главную роль отводит образованию на его поверхности более тонких адсорбционных защитных слоев молекулярного, атомарного и отрицательно ионизированного кислорода, а также гидроксильных анионов, причем адсорбированные частицы образуют монослой или долю его. Процесс образования адсорбционного пассивирующего слоя может происходить одновременно с анодным растворением металла и иметь с металлом общую стадию адсорбции гидроксила. Существует два варианта объяснения адсорбцион ного механизма пассивности — химический и электрохимический [177]. Согласно химическому варианту адсорбированный кислород насыщает активные валентности поверхностных атомов металла, уменьшая их химическую активность. Электрохимический вариант объясняет возникновение пассивности электрохимическим торможением анодного процесса растворения. Образовавшиеся на поверхности адсорбционные слои (например, из кислородных атомов), изменяя строение двойного слоя и смещая потенциал металла к положительным значениям, повышают работу выхода катиона в раствор, вследствие чего растворение металла затормаживается. Адсорбционная теория сводит пассивирующее действие адсорбированных слоев к таким изменениям электрических и химических свойств поверхности (из-за насыщения свободных валентностей металла посторонними атомами), которые ведут к энергетическим затруднениям электрохимического процесса. [c.29]


    Представления об адсорбционной природе пассивирующего слоя возникли из работ Лангмюра и Таммана и развиваются советскими исследователями Эршлером, Кабановым, Колотыркиным и др. Основной механизм защиты, по мнению этих исследователей, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирующимися частицами без разрушения металлической решетки. Для такой защиты не обязательно иметь монослой адсорбированного вещества даже доли монослоя достаточны для таких изменений электрических свойств границы раздела и перераспределения потенциала на этой границе, которые обусловливают торможение анодной реакции. [c.176]

    Могло бы показаться, что локализация разряжающихся ионов в первом монослое, а не во внешней плоскости Гельмгольца должна была бы привести к большому расхождению теории и эксперимента для растворов, не содержащих поверхностно-активных ионов. Как известно, теория дает хорошее согласие с опытом, когда в качестве ф -потенциала в кинетические уравнения подставляется потенциал 113° — потенциал внешней плоскости Гельмгольца. [c.201]

    Параметров, которые характеризуют монослой, немного площадь, поверхностное натяжение, граничный скачок потенциала. Но изучая эти величины, можно получить уникальную информацию об адсорбционных процессах, о белок-липидных взаимодействиях, фазовых переходах жирнокислотных радикалов, геометрии и упаковке липидных молекул и другую. В некоторых случаях монослои оказались. пригодными для изучения кинетики и механизма ферментативного катализа. Однако в силу того, что молекулярная пленка находится на границе раздела фаз, она не пригодна для изучения процессов переноса веществ через биологическую мембрану. Этот недостаток отсутствует у двух других типов моделей. [c.132]

    Для изучения находящихся на поверхности раздела нерастворимых пленок обычно используют три метода, в основе которых лежат измерения поверхностного давления, поверхностного потенциала и поверхностной вязкости. Первый, наиболее старый из этих методов уже давно использовался многими исследователями. Впервые измерить поверхностное давление нерастворимого монослоя прямым взвешиванием удалось Ленгмюру, который применил для этой цели плавающий барьер. Гуасталла [6 ] разработал метод, позволяющий измерять поверхностное давление вплоть до 0,001 динкм. Его поверхностные весы состоят из маятника, отклонение которого, вызываемое изменением поверхностного давления, регистрируется специальным оптическим приспособлением. Вещество, образующее пленку, растекается по поверхности обычно из растворов в петролейном эфире или других летучих водонерастворимых растворителях. При этом использование для дозировки объема микрометрической пипетки всегда позволяет легко рассчитать число нанесенных на поверхность молекул. Для изменения концентрации вещества в монослое используют способ последовательного нанесения раствора на поверхность этот способ особенно предпочтителен по сравнению с методикой поджимающего барьера для поверхности раздела вода — масло. Однако оба способа имеют ряд недостатков. Так, в последнем случае не исключена возможность утечки пленки мимо этого барьера, что затрудняет проведение измерений. С другой стороны, при использовании метода последовательного нанесения раствора имеется опасность того, что при высоких концентрациях вещества его полное растекание по поверхности не достигается. [c.279]

    Хорошо известно, что наличие в монослое электрического заряда оказывает большое влияние на поведение пленки. Если пленка жирной кислоты растекается на щелочной подложке, она заметно расширяется, что указывает на значительное уменьшение бокового притяжения менхду молекулами. Ионизированные пленки более растворимы, и их поверхностное давление, поверхностный потенциал и поверхностная вязкость зависят от pH и содержания солей в подложке, которые определяют степень ионизации и структуру диффузного слоя в объемной фазе. Влияние ионизации монослоя было впервые изучено Адамом [65] и, позже, рядом других исследователей. [c.312]

    Хибберт и Александер [295] исследовали диаграммы зависимости поверхностного давления, поверхностного потенциала и поверхностного момента от площади в монослоях изотактического и атактического полиоксипропилена. Оказалось, что по свойствам они практически не отличаются друг от друга. Однако в противоположность изотактическому полиоксипропиле-ну, который вообще не растекается, атактический полимер легко образует монослой. [c.65]

    Для получения достаточно полной информации о поведении макромолекул в монослое наряду с измерением изотерм Р—а не-обходймо применять и другие экспериментальные методики. В первую очередь следует указать на целесообразность исследования реологических свойств монослоев [6]. Для этой цели можно, например, использовать дисковый поверхностный ротационный вискозиметр (5 на рис. 1). Об изменении ориентации молекул в монослое, а также о процессах их двухмерной ассоциации и разрушения монослоев часто проще всего судить из измерений поверхностного потенциала (АУ), равного разности потенциалов Вольта чистой жидкости и жидкости с нанесенным монослоем. Один из распространенных способов измерения АУ основан на использовании ионизирующего электрода 6 на рис. 1). Интересную информацию о структуре монослоя дают исследования его проницаемости (сопротивления испарению) по отношению к молекулам жидкой подложки, которую можно определять, например, методом взвешивания контейнера с абсорбентом (7 на рис. 1). Перечисленные выше методы подробно проанализированы в [1—5]. Прекрасная установка многоцелевого назначения для комплексного исследования свойств монослоев описана в [7]. [c.211]

    Однако такая согласованность значений рсн, полученных на основе метода стабилизации поверхностного потенциала, с функцией Яо наблюдается далеко не всегда. По данным Рыбкина и Карпенко [115] в системах НВг — НгО и H IO4 — НгО измерения компенсирующих напряжений соответствующих вольта-цепей (с применением гептилового спирта в качестве агента, стабилизирующего состояние поверхности раствора) привели к значениям ран, сильно отличающимся от Яо. Для объяснения таких различий авторы [115] предположили, что адсорбционный слой на поверхности растворов НС1 состоит только из не-диссоциированных молекул и при введении в раствор поверхностно-активных веществ, образующих поверхностный мономо-лекулярный слой, полностью экранируется. В растворах же НВг и H IO4, помимо молекулярной адсорбции, имеет место специфическая адсорбция анионов (Вг- или СЮ ) на свободной поверхности раствора. При введении в раствор поверхностно-активного вещества образуемый им молекулярный монослой эффективно экранирует только поле, создаваемое молекулярными диполями кислоты, но не в состоянии экранировать поле, образованное адсорбированными анионами. Иначе говоря, изменение поверхностного потенциала раствора кислоты НА (по сравнению с водой) можно представить в виде суммы  [c.86]

    Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализо-ванные электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состоящий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла. Одновременно изменяется структура френкелевского двойного слоя вследствие частичного ухода в металл внешних электронов и в связи с этим уменьшается тормозящий выход электронов из металла скачок потенциала, а следовательно, уменьшается работа выхода электронов (уровень химического потенциала электронов внутри металла сохраняется). [c.98]

    Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализованнце электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состоящий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла. [c.101]

    Возможно, что протекание реакции на поверхности, а не в объеме содействует не только адсорбция, как таковая, но и упорядочение молекул адсорбата в результате адсорбции, которое характеризуется более выгодным расположением реакционных центров. Ориентация молекул зависит от поверхностно-активных свойств молекул и степени заполнения поверхности адсорбированным веществом. Так, Хевинга [35] установил прямую связь скорости реагирования вещества в монослое с расположением реакционных групп на границе раздела фаз. Кроме того, он отметил, что кажущиеся аномально высокие скорости некоторых реакций на поверхностях раздела обусловлены наличием местных разностей электрического потенциала, которые лгогут влиять на энергию активации этих реакций. Он же приводит пример реакции, которая не происходит [c.384]

    Значительное влияние на свойства липидного монослоя могут оказывать также макромолекулы, присутствующие в водной фазе. Взаимодейстане этих веществ, в частности белков, с липидным монослоем сопровождается их адсорбцией на поверхности монослоя н проникновением в монослой. По изменениям поверхностного давления и потенциала, а также площади, приходящейся на молекулу, могут быть изучены факторы, влияющие на белково-лнпндные взаимодействия в монослое. [c.554]

    Иной термодинамический формализм развит в серии статей Лукассен-Рейндерс [114]. В них рассматривается модель, в которой поверхностный слой состоит из растворителя и раствора вещества, образующего монослой. Локальный химический потенциал записывают в виде [c.124]

    НИЯ которого и малая упругость пара позволяют производить нагревание в вакууме до очень высоких температур ( 2500° К) с целью удаления поверхностных загрязнений. На таких проволоках, используя метод измерения коэффициента аккомодации, Робертс [80] нашел, что хемосорбция водорода быстро протекает даже при 79° К и что, по-видимому, полный монослой водорода образуется при давлениях водорода в 10 мм. Кроме того, измеряя сопротивление для контроля за повышением температуры проволоки вследствие выделения теплоты адсорбции, он показал, что теплота адсорбции водорода уменьшается с увеличением степени покрытия поверхности от 45 ккал/моль для непокрытой поверхности до 18 ккал/моль для поверхности, близкой к насышению. Тшательные опыты Франкенбурга [81], применявшего порошок вольфрама, показали еще более резкое падение теплоты адсорбции, но дали меньшую величину покрытия поверхности по сравнению с полученной Робертсом. К числу других важных работ с использованием вольфрамовых проволок относятся измерения контактного потенциала, проведенные Босуортом [82], показавшим, что работа выхода электрона с поверхности, покрытой водородом, приблизительно на 1 в больше, чем работа выхода электрона с чистой поверхности. (Недавние измерения Миньоле [83, 84] на сублимированных вольфра.мовых пленках дали несколько меньшую величину, 0,5 в.) Из этих данных был вычислен поверхностный дипольный момент, равный приблизительно —0,4 В, причем отрицательная величина указывает на то, что адсорбированный слой водорода заряжен отрицательно. Однако в отношении подробной интерпретации таких измерений имеется некоторая неопределенность [85]. [c.371]


Смотреть страницы где упоминается термин Монослои поверхностные потенциалы: [c.284]    [c.279]    [c.276]    [c.308]    [c.309]    [c.34]    [c.24]    [c.121]    [c.264]    [c.24]    [c.239]   
Физическая химия поверхностей (1979) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал поверхностный



© 2024 chem21.info Реклама на сайте