Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Полярография, Потенциометрия для измерения

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]


    Системы, в которых равновесие устанавливается быстро, удобно изучать с помощью техники титрования, которая широко используется в потенциометрии и может быть применена в полярографии и спектрофотометрии. Исследуемый раствор можно эффективно перемешивать током азота, очищенным, если необходимо, от кислорода и СО2. После каждого добавления титранта следует контролировать достижение равновесия, нужно также выполнить несколько обратных титрований, чтобы показать отсутствие гистерезиса . Измерения можно проводить при постоянной величине В, титруя раствор исходной концентрации В либо раствором с такой же концентрацией центральной группы, но с другими А и Н, либо равными объемами двух титрантов, в которых концентрации центрального иона равны О и 2 В. [c.76]

    О протекании тех или иных химических реакций судят обычно по изменению окраски веществ и растворов, по выделению газов, по выпа-цению осадков. Существует также много методов, позволяющих установить образование новых химических соединений в растворах (определение оптической плотности, потенциометрическое и кондуктомет-рическое титрование, полярография и т. д.). Однако все эти методы непригодны для случая образования химических соединений в металлических сплавах. При сплавлении нескольких металлов не наблюдается выделение газов, изменение окраски, выпадение осадков и т. д. Здесь неприменимы также методы кондуктометрии, потенциометрии, полярографии и измерение оптической плотности. Поэтому для исследования металлических сплавов применяются принципиально иные методы, а именно  [c.147]

    Как отмечалось выше, только для обратимых электродных процессов возможно надежное измерение стандартных и формальных ОВ потенциалов. В этом отношении диапазон применения потенциометрии также шире, поскольку измерения осуществляют практически в отсутствие тока, так что поляризационные эффекты менее выражены. Так, в системе Ti v/Tii даже в некомплексообразующем фоновом электролите (НС104-Ь -fNa I04), когда скорость электродного процесса обычно наиболее низкая, в потенциометрическом режиме наблюдали [44] обратимый электродный процесс на ртутном электроде. В полярографии в этих растворах, как и в H I, полярографическая волна [c.25]

    Перхлорат-хлорид- и нитрат-ионы являются слабыми комп-лексообраззгющими анионами, в то время как карбонаты, ацетаты, фосфаты или сульфаты—сильными комплексообразователями. Стремление к комплексообразованию в частном случае более или менее может быть изучено стандартными методами. Эти методы включают снектрофотометрию (комплексные ионы часто имеют различные спектры поглощения) потенциометрию (измерение изменения потенциала в присутствии комплексообразующего аниона) полярографию эксперименты по распределению между несмепшвающимися растворителями или между ионообменной смолой и раствором, а также определение растворимости. Все эти методы были применены для изучения комплексных ионов урана и других актинидных элементов. В настоящее время известно большое количество комплексных ионов урана как в виде катионов, так и в виде анионов. Некоторые из них играют важную роль при выделении урана из руд. Здесь мы ограничимся обсуждением небольшого числа комплексов урана, для которых имеются количественные характеристики. [c.200]


    Попытки получить ориентировочные количественные (или по-луколичественные) данные о подвижности внутрисферных лигандов предпринимались еще в 1920-х годах. Например, серия работ И. И. Черняева и сотр. [84, 160] по изучению молекулярной электропроводности растворов комплексных соединений в связи с миграцией внутрисферных лигандов под действием растворителя. Этими работами было показано, что метод измерения электропроводности в частных случаях может быть применим только для грубой количественной оценки подвижности лигандов. Позже, в 1940-х годах, для характеристики лабильности внутрисферных лигандов, а также их тракс-активности были предложены методы измерения молекулярных рефракций [69] и метод электрометрического титрования [148]. Привлечение широкого ряда методов физической химии и физики, как то спектроскопия, полярография, потенциометрия, термохимические методы и др., становилось все более необходимым для создания полной теории трансвлияния. Это неоднократно подчеркивалось на проводившихся в 1950-х годах Совещании по закономерности трансвлияния [28], 6-м Всесоюзном совещании по химии комплексных соединений (1953 г.) 1161] и 1-м Украинском республиканском совещании по неорганической химии (1953 г.) В то же время было несомненно, что трансвлияние проявляется в первую очередь в кинетике процессов замещения лигандов во внутренней сфере комплексов [162]. Это подтверждалось не только первыми работами И. И. Черняева, где трансвлияние характеризовалось как изменение подвижно- [c.71]

    Выполнение работы. 1. Собрать полярограф (см. рис. 43, а и работу 68). Собрать потенциометр для измерения э. д. с. гальванического элемента (см. стр. 140). Собрать электролитическую ячейку. В тщательно вымытый и высушенный трехкамерный Ш-об-разной формы стеклянный сосуд (рис. 44) с диаметром наружных трубок 20—25 мм и внутренней 30—35 мм налить раствор серной кислоты любой моляльности (от 1 до 0,5). Вставить в раствор и жестко закрепить катод 3. Материал катода — один из металлов, указанных в задании. Чтобы уменьщить влияние краевых эффектов электрического -поля, вставить также в раствор две свинцовые или платиновые пластинки — аноды ] н 4. Катоды и аноды вмонтированы в стеклянные трубки. Перед каждым опытом катод и аноды очищать тонкой наждачной бумагой, промыть этанолом, дистиллированной водой и соответствующим раствором. Замерить длину и ширину катода. Вычислить рабочую площадь поверхности катода S. Методику очистки платиновой пластины и приготовление катодов см. в соответствующих работах на стр. 147. Размер пластин 15X10 мм, толщина около 1 мм. [c.210]

    Электролит алюминиевого электролизера, определение крио-литового отношения 6006 Электролиты вычисление pH в водных растворах 694 измерение электропроводности 1117, 1118 Электролиты гальванич. ванн, определение отдельных компонентов, см. при соответствующих элементах и веществах, а также ванны гальванические Электролиты расплавленные, как фон в полярографии 1034, 1036, 1038, 1054 Электрометаллургия, контроль сырья 6291 Электрометрический рН-компара-тор, применение 1805 Электрометрическое титрование, см. потенциометрия Электрон капельный метод определения качества оксидной пленки на нем 3835 определение А1 в магниевых сплавах типа электрон 5210 Электронагревательные приборы 2245—2256 Электронная теория кислот и оснований 570 Электронные приборы для элек-трохимич. методов анализа, классификация 1712. 1713 Электронографическая аппаратура 2284 [c.400]

    Классич. методами К. а. (т. наз. химич. методами К. а.) являются весовой анализ, основанный на измерении веса продукта реакции, в к-рой участвует определяемое вещество, п объемный анализ, заключающийся в измерении количества реактива, израсходованного на реакцию с определяемым в-вом (титриметрич. анализ), или изменепии объема анализируемого газа после поглощения к.-л. составной части газовый анализ). Известны и мн. др. методы определения, основанные на измерении физич. величин, зависящих от количества вещества. К этим методам относятся т. наз. физико-химич. и чисто физич. методы апализа. В их числе электрометрич. методы анализа, напр, полярография, кондуктометрия, потенциометрия, кулонометрия и др. оптич. методы анализа, напр, колориметрия, спектрофотометрпя, спектральные методы и др. (перечень основных методов приведен в ст. Аналитическая химия, т. 1, стр. 218). За иек-рыми исключениями все эти методы являются инструментальными, т. к. они требуют пспользования иных измерительных инструментов, чем весы и бюретки. Подробнее см. статьи об отдельных методах анализа, а также ст. Инструментальные лгетоды анализа. [c.321]

    Книга является вторым, значительно дополнсиньш и пере-работанньш изданием монографии, вышедшей в 1961 г. Она представляет собой руководство но применению выпускаемых нашей промышленностью новых электронных приборов и схем в физико-химических исследованиях (измерение диэлектрической проницаемости, кондуктометрия, высокочастотное титрование, потенциометрия, кулонометрия, полярография), а также в контроле химического производства. В книге рассматриваются электронные схемы и устройства, описанные в отечественной и зарубежной литературе. [c.2]


    При использовании немодулированных источников света для измерения постоянных токов могут применяться любые достаточно чувствительные приборы, и в частности простейший из них — гальванометр. В качестве усилителей постоянного тока могут быть использованы приборы специального назначения, например вакууметры ВИ-3 или ВИТ-1. Оба указанных прибора используются без дополнительной переделки ток с фотоумножителя подается непосредственно на колпачок шланга, подсоединяемого к манометрической лампе. Компенсация темповых токов умножителя, а также фототока, соответствующего собственному излучению пламени, осуществляется потенциометрами Установка нуля и Калибровка . Наиболее удобен для измерения постоянных токов электрометрический усилитель ЭМУ-4 прибор имеет широкий диапазон компенсации токов, что дает возможность осуществить измерения абсорбционных сигналов по способу расширенной шкалы. В ряде работ применен ламповый вольтметр ЛВ-9 [172, 200]. Могут применяться с небольшими переделками и различного типа рН-метры, например ЛП-58. Удобными в использовании являются также регистрирующие на бумагу по-лярографы, например П.4-2. Применение последних не требует из.менений в схеме ток с фотоумножителя подается непосредственно на вход полярографа. [c.33]


Смотреть страницы где упоминается термин также Полярография, Потенциометрия для измерения: [c.261]    [c.30]    [c.321]   
Равновесия в растворах (1983) -- [ c.97 , c.124 , c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Полярограф

Полярография

Потенциометр

Потенциометрия

Потенциометрия измерение

также Полярография, Потенциометрия



© 2025 chem21.info Реклама на сайте