Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение спектроскопии для изучения молекулярного

    Строение вещества. В этом разделе изучается строение атомов и молекул, а также агрегатные состояния веществ. В экспериментальных исследованиях строения молекул наибольщее применение получил метод молекулярной спектроскопии. При изучении агрегатных состояний рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах. Этот раздел имеет важное значение для фармации. Подавляющее большинство лекарственных веществ представляет собой сложные органические соединения с несколькими функциональными группами в молекуле. Химическая структура соединений определяет их биологическую активность. Установление химической структуры соединений методами молекулярной спектроскопии и выяснение связи с биологической активностью представляют собой важные проблемы фармации. [c.9]


    В 1928 г. с открытием эффекта комбинационного рассеяния света было получено другое средство для изучения молекулярных спектров. Этот метод имеет некоторые экспериментальные преимущества перед инфракрасной спектроскопией. Широкая область частот может исследоваться при помощи фотографической методики. Это позволяет очень быстро получать качественные и полуколичественные результаты. По этой причине до 1940 г. спектры комбинационного рассеяния использовались для аналитических работ чаще, чем инфракрасные. Хотя оба метода представляют собой средство для изучения колебаний молекул, они часто дополняют друг друга. В настоящее время инфракрасная спектроскопия имеет более широкое применение в промышленности в значительной степени вследствие наличия необходимого оборудования. [c.313]

    Оптические свойства полимеров прежде всего связаны с их химическим составом и молекулярным строением. В соответствии с этим оптические методы находят применение как при установлении особенностей строения полимеров (инфракрасная и ультрафиолетовая спектроскопия), так и при изучении механизмов их молекулярной подвижности (поляризованная люминесценция, радиотермолюминесценция). [c.253]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    IV. СЕЛЕКТИВНАЯ ДВУМЕРНАЯ ОБМЕННАЯ ЯМР-СПЕКТРОСКОПИЯ И ЕЕ ПРИМЕНЕНИЕ К ИЗУЧЕНИЮ МОЛЕКУЛЯРНЫХ ДИНАМИЧЕСКИХ ПРОЦЕССОВ [c.104]

    Применение комплекса современных физических и химических методов исследования (молекулярная перегонка, хроматография, кристаллография, инфракрасная спектроскопия и масс-спектроскопия, комплексообразование с карбамидом и тиокарбамидом) к изучению строения высокомолекулярных парафинов позволило сделать новый шаг к более глубокому познанию химической природы этого важного и широко распространенного в природе класса углеводородов. Полученные новые экспериментальные данные не только не поколебали, но еще более подкрепили некоторые из основных положений о химической природе парафинов и церезинов, к которым пришли различные исследователи на основании применения других, преимущественно химических и физико-химических методов. [c.107]


    Мы не будем касаться характеристических частот, хотя спектроскопия КР, вероятно, должна превратиться в широко используемый метод качественного анализа, особенно в органической химии [1, 2]. Спектроскопию КР применяют для изучения твердого состояния потому, что в основном исследуемые образцы при комнатной температуре находятся в твердом состоянии или при отвердевании сужаются спектральные полосы. Ограничивая круг вопросов, обсужденных в данной главе, нам казалось важным остановиться на рассмотрении только тех проблем, которые связаны с твердым агрегатным состоянием. При этом мы не преследуем цели представить полный литературный обзор последних работ по спектроскопии КР молекулярных кристаллов. Мы рассмотрим спектры малых молекул, так как они служат лучшей иллюстрацией использования спектроскопии КР для получения информации о структуре и колебательных уровнях энергии молекулярных кристаллов. Для читателей, интересующихся в основном аналитическим применением спектроскопии КР, можно рекомендовать более общие труды по колебательным спектрам [3, 4]. Ссылки на работы, посвященные спектрам КР конкретных соединений, можно найти в обзорах [5, 6]. [c.356]

    Применение газовой хроматографии для изучения молекулярного разрушения. Если измерение молекулярных весов дополняет метод ИК-спектроскопии, то метод хроматографирования летучих продуктов является дублером метода масс-спектрометрии. [c.185]

    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опытных данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Исследование триплетных состояний играет важную роль при изучении люминесценции и других важных явлений молекулярной спектроскопии. Оно находит широкое применение как в химии (при изучении фотохимических и радиационно-химических процессов), так и в смежных с ней разделах наук (химическая физика, молекулярная биология и т. п.). [c.137]

    При рассмотрении химических и каталитических свойств цеолитов часто достаточно феноменологического описания, однако по-настоящему понять эти явления можно, только детально изучив кристаллическую структуру цеолитов. В этой главе обсуждаются основные структурные характеристики — от топологии алюмосиликат-ного каркаса до локализации катионов, —а также такие вопросы, как кинетика кристаллизации и термодинамические свойства цеолитов. Основное внимание уделяется результатам изучения структуры кристаллов с помощью рентгеноструктурного анализа, но в некоторых случаях привлекаются данные, полученные другими методами (ЭПР, ЯМР, ИК-спектроскопия). В качестве литературных источников используются главным образом монография Брека [1], в которой подробно описаны структура, химические свойства и применение цеолитов, и труды международных конференций по молекулярным ситам [2—5], а не разрозненные журнальные статьи. [c.11]


    С тех пор в учебной литературе сложилась традиция ограничивать теорию растворов законами Вант-Гоффа, Рауля, Генри, теорией Аррениуса и другими вопросами, связанными с применением методов термодинамики. Эта традиция поддерживалась тем, что работы по теории растворов долгое время развивались преимущественно термодинамическими методами. Но начиная с 50-х годов положение изменилось. Постепенно ведущую роль стали играть спектроскопия, дифракционные методы, рассеяние света, радиоспектроскопия, акустическая спектроскопия. Резко расширились возможности изучения структуры жидких систем. Стали доступны исследованию новые, ранее неизвестные молекулярные процессы, в том числе даже такие, которые протекают в жидкостях в течение 10 °—с. Не так давно об этом можно было лишь мечтать. [c.5]

    Применение. Метод магнитной резонансной спектроскопии применяется в основном в физике и физической химии для изучения кристаллической структуры, фазовых превращений и движений молекул в твердых телах н для определения ядерных констант [9, 10]. Он имеет большое потенциальное значение для определения молекулярной структуры веществ [4]. [c.248]

    Одной из главнейших задач современной науки является изучение строения и свойств многоатомных молекул. В последние два десятилетия наряду с традиционными химическими методами все большее, а иногда и решающее значение приобретают различные физические методы исследования, в частности, методы, основанные на изучении энергетических уровней многоатомных молекул. К этим методам относятся методы электронной, колебательной и вращательной спектроскопии, электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и др. Одно из основных преимуществ этих методов заключается в возможности изучения молекул и молекулярных ассоциатов в любом агрегатном состоянии, при разных температурах и давлениях и без разрушения молекул, как это обычно имеет место при применении химических методов. [c.168]

    Метод ЯМР открывает новые возможности для изучения равновесий при образовании Н-связи, типов молекулярных агрегатов и их термодинамических свойств. Благодаря высокой чувствительности этого метода возможно удастся распространить исследования такого рода на системы с более слабыми Н-связями. По-видимому, применение методов ЯМР представляет исключительную ценность для определения скорости образования Н-связи. Это должно привести к лучшему пониманию природы потенциальной функции Н-связи. Есть все основания ожидать быстрого роста применений методов ЯМР для исследования системе Н-связями, подобного наблюдавшемуся ранее для ИК-спектроскопии. [c.289]

    Спектроскопия ядерного магнитного резонанса (ЯМР) -важнейший спектроскопический метод выяснения молекулярной структуры и стереохимии органических соединений. Спектроскопия ЯМР широко применяется в органической, неорганической, металлоорганической, биологической и медицинской химии, где с ее помощью получают детальную ин юр-мацию не только о низкомолЬкулярных соедининиях, но и о синтетических и природных полимерах и макромолекулах. Кроме того, спектроскопия ЯМР находит широкое применение для исследования цутей биосинтеза, химической динамики, а также для непосредственного изучения все большего числа внутриклеточных процессов, целых органов и даже живых организмов. Эта глава, однако, посвящена главным образом определению структуры органических соединений с помощью спектроскопии ЯМР Н и С. [c.79]

    Вопрос о возможности применения метода инфракрасной спектроскопии к исследованию столь сложных и мало изученных высокомолекулярных составляющих нефтей, какими являются смолы и асфальтены, заслуживает особого внимания. Конечно, пока нельзя рассчитывать на получение при помощи этого метода каких-либо количественных данных, характеризующих групповой состав смо-листо-асфальтеновой части нефти, или, тем более, на идентификацию индивидуальных соединений, входящих в состав этой, очень сложной, физически и химически неоднородной смеси веществ. Однако можно делать достаточно обоснованные и правильные заключения о характере структуры исследуемой фракции высокомолекулярных веществ нефтей, сопоставляя данные инфракрасной спектроскопии, полученные для большого числа различных фракций высокомолекулярных компонентов нефти, выделенных из нефти в результате применения разнообразных методов (хроматография, дробное осаждение, молекулярная перегонка и т. д.), и наблюдая изменения в спектрах поглощения в инфракрасной области от фракции к фракции, происходящие параллельно с изменением химического состава и свойств последних (элементарный и структурно-групповой состав, функциональные группы, молекулярно-поверхностные и электрические свойства а т. д.). Особенно полезной может оказаться инфракрасная спектроскопия для наблюдения за качественными изменениями фракций высокомолекулярных соединений в процессах их химических превращений — в реакциях окисления, гидрирования. В этом случае сравнение инфракрасных спектров фракций до и после реакции свидетельствует весьма наглядно и убедительно о направлении и глубине химических изменений. [c.477]

    К областям применения ЯМР-спектроскопии высокого разрешения для характеристики полимеров относятся изучение конфигурации полимерных цепей (форма цепей полимера, образованная основными валентными связями) исследование конформации полимерных цепей (форма цепей полимера, обусловленная вращением вокруг основных валентных связей) анализ распределения последовательностей и тактичности в полимерах и сополимерах установление разницы между полимерными смесями, блок-сополимерами, чередующимися сополимерами и статистическими сополимерами исследование переходов спираль — клубок изучение молекулярных взаимодействий в полимерных растворах, диффузии в полимерных пленках, совместимости полимеров и полимерных смесей исследование процессов сшивания изучение механизма роста цепи при винильной полимеризации. [c.339]

    Спектроскопию ЯМР высокого разрешения можно применять для изучения самЫх разнообразных химических проблем, решение которых другими методами или невозможно, или очень затруднено. К преимуществам метода можно отнести его быстроту, отсутствие необходимости подвергать деструкции исследуемое вещество и в ряде случаев однозначность получаемой с его помощью информации. Метод ЯМР может быть использован при определении молекулярной структуры, при исследовании стереохимии молекул, заторможенности внутреннего вращения, явлений диссоциации, реакций обмена и процессов образования водородной связи. В этой главе детально будут рассмотрены только две первые области применения ЯМР. [c.220]

    К настоящему времени в основном уже завершен первый этап экспериментальных исследований поверхности твердых тел и адсорбции с применением инфракрасной спектроскопии и выяснены возможности этого метода. У же довольно четко определился круг вопросов и направлений в области химии поверхности, адсорбции и катализа, в которых применение спектральных методов дает наибольший эффект. Выяснилось, что сами спектральные методы и получаемые с их помощью результаты не могут заменить или уменьшить значение термодинамических методов изучения адсорбции и получаемых с их помощью данных. Однако спектральные данные служат весьма важным дополнением к результатам термодинамических исследований, позволяя углубить наши представления о химии поверхности и процессах адсорбции на молекулярном уровне. [c.434]

    В настоящее время по мере того, как изучение состава нефти продвигается в область соединений с большим молекулярным весом, определение индивидуальных углеводородов становится почти безнадежным. Даже путем комбинации химических и физических методов труднс, а часто и невозможно выделить требуемую простую фракцию. Даже если бы это и можно было сделать, для калибровки hj kho было бы такое большое количество индивидуальных соединений, которое нельзя получить в ближайшем будущем. Поэтому химики-нефтяники вынуждены ограничиться сведениями о типе молекул углеводородов и структурных групп. Возможно, что это является наиболее ценным применением спектроскопии. Другой вопрос, с которым иногда сталкивается химия нефти, это установление структуры отдельного соединения. Для этой цели пользуются характеристическими частотами, наблюдаемыми в спектрах для определенных структур. Никогда нельзя написать структурную формулу соединения только на основании спектральных данных. Однако, сопоставляя спектральные данные с данными, полученными другими методами, часто мо кно сделать выбор между несколькими взаимно исключающимися структурами. [c.320]

    Области применения эмиссионной спектроскопии для характеристики полимеров включают изучение молекулярной подвижности макромолекул в растворах, изучение естественной флуоресценции полимеров и биополимеров, изучение взаимодействия полимеров с красителями, изучение примесей в промышленных полимерах, исследование фотодеструкции и фотостабилизации полимеров, изучение процессов сенсибилизации (сенсибилизированной фотополимеризации, фотодеструкции, фотоотверждения). [c.286]

    Любой чувствительный способ измерения может служить аналитическим методом. Не составляет исключения и наука о поверхности. Любым из методов, перечисленных в табл. V-B-1, можно воспользоваться для решения вопросов, даже лишь очень отдаленно связанных с изучением поверхностей. Так, например, самый современный лазерный микродатчик, разработанный для изучения десорбции молекул с твердых поверхностей, может служить для обнаружения пестицидов на листьях растений. Всего десять лет назад это было совершенно невозможно, а сегодня мы в состоянии проследить на количественном уровне распределение пестицидов в поле, оценить их устойчивость, вымывание дождями и химические трансформации. Конечно, аналитический метод можно использовать и для контроля за химическими изменениями, происходящими на поверхности или с поверхностью, а также для выяснения характера этих изменений, Во многих случаях такого рода исследования связаны с изучением катализа. Примеры применения спектроскопии потерь электронной энергии (EELS) для определения молекулярных структур, образующихся на катализаторе в процессе ф> нкционирования, были приведены в разд. IV-B, Такие исследования положили начало новой области аналитической химии — анализу поверхностей. [c.239]

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]

    Типичной областью широкого применения ЭВМ в отечественных научных исследованиях является молекулярная спектроскопия. Методы молекулярной спектроокопии занимают ведущее место среди всех аналитических методов изучения строения и контроля качественного и количественного состава сложных веществ. Наиболее широко они используются в химических и биохимических исследованиях. Например, инфракрасные спектрофотометры в настоящее время являются непременным оборудованием синтетических органических лабораторий, позволяющим оперативно вести идентификацию и функциональный анализ синтезированных неизвестных соединений. Однако, если современные серийные ИК спектрофотометры позволяют получать спектры в области 4000— 400 СМ всего за несколько минут, то идентификация по этому спектру с помощью каталогов и атласов ИК спектров, содержащих сотни тысяч спектров, требует от нескольких дней до нескольких недель интенсивной работы. [c.247]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Достижения в области исследования состава битумов являются следствием применения методов и приборов, обычно используемых в смежных областях науки. Поэтому для более глубокого изучения битумов необходимо находить более рациональные методы разделения битумов на узкие фракции, а также применять новейшие методы их исследования (сольвентное фракционирование, селективная адсорбция, термодиффузия, диализ, электрическое осаждение, аддукция мочевиной, спектроскопия, микроскопия, пара- и ядерно-магнитный резонанс). Одним из перспективных методов разделения битума на фракции по молекулярному весу является гельфильтрование. [c.37]

    Таким образом, ближайшие перспективы экспериментального изучения пространственного строения белков, если судить по наметившейся тенденции, будут определяться достижениями в использовании синхротронной радиации. Существенных результатов можно ожидать от совместного применения рентгеноструктурного анализа белков с методами малоуглового рассеяния, криомикроскопии и многочисленными методами молекулярной спектроскопии. Среди последних ценен метод ЯМР, быстро прогрессирующий в последнее десятилетие. Его применение на гетероатомах и использование трехмерной спектроскопии ЯМР привело к упрощению анализа спектров и повышению его информативности в исследовании сложных структур. [c.75]

    Диапазон энергий квантов С. и.— от долей эВ до сотен кэВ. Излучение характеризуется непрерывным спектром, высокой степенью поляризации, большой интенсивностью (напр., по яркости превосходит на неск. порядков рентгеновское излучение, получаемое в трубках с вращающимся анодом), чрезвычайно малой расходимостью, модулирован-востью (длительность импульсов до 100 пс). Эти св-ва позволяют использовать С. и. в спектроскопии, рентгеновском структурном анализе, для изучения оптич. активности молекул, возбуждения люминесценции, инициирования фотохим. р-ций и др. Так, благодаря большой яркости источников С. и. удалось зарегистрировать молекулярные спектры поглощения с разрешением 0,003 нм. Разрабатываются новые направления молекулярной спектроскопии, использующие времени структуру С. и. для исследования ме-тастабнльных пртдуктов фотолиза, механизма сверхбыстрых р-ций и т. п. Рентгеновский структурный анализ биол. объектов, в частности монокристаллов белков, позволяет значительно сократить время регистрации рентгенограмм, уменьшить радиац. нагрузки на образец. С. и. имеет и практич. применение, напр, для фотолитографии в произ-ве элементов интегральных схем. [c.528]

    Конике [17] определял путем титрования содержание в молекулах полимера концевых гидроксильных и карбоксильных групп Маршалл и Тодд [18] применяли для определения концевых групп в полиэтилентерефта-лате метод сопоставления данных титрования с данными изучения осмотического давления, а Уард [19] использовал метод инфракрасной спектроскопии с применением дейтерирования для определения концентрации концевых групп и, следовательно, молекулярного веса полиэфира. В результате разработки последнего метода было предложено [20] уравнение, связываюш ее характеристическую вязкость [т]] растворов полиэтилентерефталата в о-хлорфеноле и среднечисловой молекулярный вес этого полимера [c.8]

    Таким образом, в изданных к настоящему времени монографиях работы последних 5—7 лет не рассмотрены. Вместе с тем именно за эти годы инфракрасная спектроскопия поверхностных соединений и адсорбционных комплексов развилась особенно сильно и выявились перспективы ее количественных применений в комплексе с другими методами. Эти особенности развития инфракрасной спектроскопии авторы старались учесть в настоящей книге, посвященной исследованиям методом инфракрасной спектроскопии химии поверхности и адсорбции окислами кремния и алюминия, аморфными алюмосиликагелями, а также кристаллическими пористыми алюмосиликатами — цеолитами. Таким образом, в книге рассмотрено сравнительно небольшое число окислов — окись кремния и алюминия, а также некоторые их аморфные и кристаллические соединения. Эти адсорбенты — аэросилы, аэросилогели (силохромы), силикагели, пористые стекла, алюмогели, алюмосиликатные катализаторы и различные катионированные и декатионированные цеолиты — весьма важны как для изучения взаимодействий при молекулярной адсорбции и хемосорбции, так и для практического использования в аналитической и препаративной хроматографии, в адсорбционных разделениях, в частности в осушке, в катализе и многих других важных областях технологии. [c.8]


Смотреть страницы где упоминается термин Применение спектроскопии для изучения молекулярного: [c.188]    [c.282]    [c.477]    [c.189]    [c.6]    [c.268]    [c.528]    [c.21]    [c.2]    [c.268]    [c.314]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия молекулярная

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте