Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы химическое строение

    ХИМИЧЕСКОЕ СТРОЕНИЕ СМОЛ И АСФАЛЬТЕНОВ [c.90]

    ХИМИЧЕСКОЕ СТРОЕНИЕ СМОЛ 11 АСФАЛЬТЕНОВ [c.109]

    Дать химическое определение асфальтенов и смол невозможно, потому что ничего точного о их химическом строении не известна [c.113]

    В процессах образования эмульсий большую роль играют содержащиеся в нефти различные смолы, асфальтены и кислоты, являющиеся хорошими эмульгаторами и стабилизаторами. Химическое строение смол и асфальтенов исследовано еще не полностью. Молекулярная масса нефтяных смол изменяется от 500 до 1000. Все они содержат углерод, водород, кислород и почти все — азот и серу. Содержание нефтяных смол — от одного до нескольких десятков массовых процентов. [c.11]


    В работах С, Р. Сергиенко и его сотрудников [3] показано существование генетической связи в химическом строении асфальтенов, смол и углеводородов, ьыраженной следующей схемой углеводороды — смолы — асфальтены. Переход от смол к ас( )альтенам сопровождается увеличением доли ароматических [c.14]

    Исследования химических реакций нефтяных смол и асфальтенов, прежде всего реакций мягкого каталитического гидрирования, как с целью выяснения химического строения их путем ступенчатой дезагрегации отдельных частей их молекул, так и для выяснения возможных путей их химической переработки и использования, находятся еще пока в начальной стадии. [c.109]

    Высокомолекулярная часть нефти представляет собой сложную многокомпонентную, в большинстве случаев коллоидную систему, стойкость которой зависит от химической природы и количественных соотношений основных ее составляющих (углеводороды, смолы и асфальтены). Химический состав и строение соединений, входящих в эту систему, необычайно разнообразны. Различие химического строения молекул довольно сильно проявляется даже в углеводородах и становится почти безграничным при переходе от углеводородов к весьма разнообразным гетероорганическим соединениям, в состав которых наряду с углеродом и водородом входят кислород, сера, азот, а нередко и металлы (N1, V, Ге, Мд, Сг, Т1, Со и др.). [c.12]

    В настоящее время имеются экспериментальные данные, свидетельствующие о наличии определенного параллелизма между характером люминесцентного свечения, канцерогенной активностью и химическим строением конденсированных полициклических ароматических углеводородов [32]. Предпринимаются многочисленные попытки контролировать степень канцерогенности каменноугольных и сланцевых смол при помощи методов люминесцентного анализа. Углеводородные смеси, обладающие канцерогенной активностью, имеют [c.283]

    Сближение методов псследования смол, применяемых различными авторами, делает возможным сопоставление получаемых ими результатов, что весьма важно для понимания химического строения нефтяных смол. [c.476]

    В работе [266] показано, что при температурах ниже 100°С нефтяные остатки при центрифугировании даже с частотой вращения 1600 мин" в течение 600 мин не расслаиваются. Неструктурированные асфальтены образуют насыщенный раствор. Например, соотношение растворенных и диспергированных асфальтенов зависит от химической природы среды, определяется количественным соотношением и химическим строением углеводородов и смол, а также природой взаимодействия в асфальтенах. [c.281]


    Легче всего сернистые и кислородные соединения выделять из среднедистиллятных фракций где их количество намного больше, чем в бензиновых фракциях. Кроме того, химическое строение сернистах и кислородных соединений, содержащихся в среднедистиллятных фракциях, менее сложно, чем в нефтепродуктах большего молекулярного веса, в которых находится значительное количество смол. [c.9]

    Заслуживает серьезного внимания изучение зависимости элементного состава, химического строения и канцерогенности различных нефтепродуктов. Весьма существенным является вопрос о существовании зависимости между степенью ароматичности и кон-денспрованностп полициклических углеводородов, смол и асфальтенов, присутствующих в нефти, продуктов ее переработки и канцерогенностью. До сих пор нет достаточной ясности в характере количественной зависимости канцерогенности продуктов нефтепереработки от технологических процессов и температурно-временных режимов осуществления их. Известно, что нефтяные остатки, получаемые в высокотемпературных процессах пиролиза, коксования и крекинга (термического и каталитического), отличаются более высокой канцерогенностью, чем нрямогонные тяжелые нефтяные остатки. В продуктах же, получаемых в процессах каталитического гидрирования, наоборот, канцерогепность резко снижается или совсем исчезает. [c.109]

    Согласно классификации природных ископаемых с углеводородной основой, предложенной Абрахамом [213], к нефтям относят те, что содержат до 35-40 % масс. САБ, а природные асфальты и битумы содержат до 60-75 % масс. САВ, по другим данным - до 42-81 % [141]. В отличие от более легких компонентов нефти, признаком отнесения которых к своим группам было сходство их химического строения, критерием объединения соединений в класс под названием САВ служит их близость по растворимости в конкретном растворителе. При действии на нефть больших количеств петролейного эфира, низкокипящих алканов происходит осаждение веществ, называемых асфальте-нами, которые растворимы в низших аренах, и сольватирование других компонентов - мальтенов, состоящих из углеводородной части и смол. [c.26]

    В качестве пленкообразователей лакокрасочных материалов используются низкомолекулярные и высокомолекулярные природные и синтетические смолы. Для получения на защищаемой поверхности пленок покрытий на основе этих смол используют следующие процессы испарение растворителя, полимеризацию или поликонденсацию, сплавление, электроосаждение, испарение растворителя и полимеризацию или поликонденсацию. При этом для каждого пленкообразователя характерен свой процесс образования защитной пленки на поверхности, который зависит от химического строения, функциональности и относительной молекулярной массы пленкообразователя. [c.119]

    Различная способность к графитации коксов объясняется неодинаковыми возможностями для ориентации ароматических макромолекул, образующихся при нагреве органических веществ, что определяется двумя факторами химическим строением исходного вещества [1—4] и условиями его карбонизации )[5, 6]. В этих работах показано, что изменение условий карбонизации, т. е. приложение давления на стадии карбонизации к неграфитирующемуся в обычных условиях веществу позволяет получить графитирующийся кокс. Под давлением в материале формируются участки с предпочтительной ориентацией ароматических макромолекул, что обусловливает получение кокса с высокой способностью к графитации. Сравнительное исследование электронных свойств (термоэлектродвижущей силы, электропроводности) кокса фенолформальдегидной смолы (ФФС), полученного без приложения давления и под давлением, показало, что основные этапы структурных превращений в этих материалах практически одинаковы, несмотря на их различную способность к графитации [7]. [c.188]

    Гидрирование смолы, выделенной из ромашкинской нефти, проводилось в автоклаве в присутствии катализатора WSj— —NiS—AI2O3. Смола была выделена из смеси высокомолекулярных соединений ромашкинской нефти по методике, описанной в [23], и характеризовалась следующими свойствами мол. вес 929, содержание гетероатомов более 7% ( 4% серы, 2% кислорода и 1,0% азота), отношение С/Н равно 8,9. Растворенная в бензоле и, и циклогексане смола (2—5-кратное количество растворителя) подвергалась гидрированию при рабочем давлении 300 атм, температуре 300° С, в течение 40—80 час. Здесь также наблюдались реакции обессеривания исходных фракций и насыщение их водородом без снижения молекулярных весов, что указывает на то, что основная часть атомов серы находится в исходных сераорганических соединениях не в виде мостиков, а входит в состав гетероциклов. Каталитическому гидрированию с целью установления особенностей их химического строения подвергались природные нефтяные смолы [17]. Гидрогенизат отделялся от ка-тализата, от него отгонялся растворитель (в токе азота на водяной бане), после чего гидрогенизат доводился до постоянного веса в вакууме. После общей характеристики гидрогенизат разделялся на силикагеле АСК на углеводороды и смолы по методике, описанной в [23]. [c.123]


    Детальное раздельное исследование зависимости физических и химических свойств высокомолекулярных компонентов нефти (углеводородов, смол и асфальтенов) от их элементного состава и химического строения позволит, несомненно, решить, наконец, такую важную для здравоохранения и до сих нор не решенную проблему, как установление ответственных за канцерогенную активность нефтей и нефтепродуктов структурных звеньев и атомных группировок в молекулах компонентов нефти. По литературным данным, канцерогенность нефтепродуктов связывается с по-ликонденсированными ароматическими структурами углеводородов и их производных. С этой точки зрения тяжелые нефтяные остатки, в которых все основные компоненты характеризуются именно такой структурой, представляются особенно интересным объектом для исследования. Твердо установлено, что остатки переработки нефти методами пиролиза и каталитического крекинга — остатки с наиболее богатым содержанием конденсированных ароматических углеводородов, характеризуются особенно высокой канцерогенностью. Экспериментально доказано, что канцерогенность этих нефтяных остатков резко снижается или исчезает совсем, если подвергнуть их гидрированию или окислению в присутствии небольших концентраций озона. Снижение канцерогенности в гидрированных нефтепродуктах — это дополнительный довод в пользу применения гидрогенизационных методов переработки тяжелых остатков [31—35]. [c.263]

    Научное и практическое значение исследований, направленных на выяснение химической природы наиболее высокомолекулярной части нефти, трудно переоценить. Эта часть нефти до настоящего времени остается все еще почти неисследованной. Известно лишь, что в ней сконцентрированы углеводороды наиболее сложного строения молекулы их имеют гибридную структуру и отличаются большими размерами (молекулярный вес от 400 до 1000 и выше). Кроме того, в высокомолекулярной части нефти сосредоточено основное количество всех содержащихся в нефтях гетерооргапических соединений (включая смолы и асфальтены) молекулярного веса от 500 до 2000—3000 и выше. Это наиболее сложные из всех содержащихся в нефтях соединений, о свойствах, а тем более о химическом строении которых мы знаем еще очень мало. [c.6]

    Многие свойства асфальтов, тяжелых нефтей и нефтяных остат- ков объясняются склонностью асФяльтенов образовывать коллоидные растворы в смолах и некоторых углеводородах. Отдельные из этих положений, так же как и вз ЩГЖаркуссона [15] па химическую природу асфальтенов и смол, не потеряли своего значения II в настоящее время, хотя эти положения дают лишь чисто внешнюю, качественную характеристику свойств. За последние 30 лет мы не очень далеко продвииулись в познании химического строения и свойств смолисто-асфальтеновых веществ нефтей. [c.439]

    Нефтяные смолы представляют собой смесь наиболее многочисленных и разнообразных по химическому строению высокомолекулярных соедпиеипй нефти, хидшческп весьма изменчивых и трудно разделимых на болео однородные узкие фракции близких по строению веществ. Неудивительно поэтому, что к более глубокому исследова-ппю пх хилшческой ирироды приступили лишь сравнительно недавно. [c.443]

    В настоящее время люминесцентное свечение в большинстве случаев не позволяет установить определенную количественную связь его с химическим строением люминесцирующих веществ, том не менее методы, основанные на использовании этого типа свечения, позволяют весьма успешно решать качественно, а нередко и нолуколи-чественно некоторые практически важные задачи. Так, при визуальном наблюдении общей картины люминесцентного свечения нефтяных смол и продуктов их гидрирования и окисления можно составить себе представление о направлении и глубине химических превращений этих веществ. [c.487]

    Сопоставление по составу, строению и свойствам получаелшх при гидрировании асфальтенов, смол и углеводородов с аналогичными компонентами, выделенными непосредственно из нефти, позволит составить экспериментально обоснованное объективное суждение о химическом строении молекул асфальтенов и о характере связей и переходов между нефтяными асфальтенами, смолами и углеводородами. [c.519]

    Данные о химическом строении и соотношении различных фрагментов в макромолекулах нефтяных смол и асфальтенов весьма ограничены. Установлено, что в макромолекулах смол н асфальтенов содержатся ароматические ядра различного размера (от MOHO- до пентацикличееких и более) с иреобладанмем [c.34]

    Общий тип структурной единицы смол и асфальтенев. Сложность и разнообразие химического строения САВ, а также отсутствие единой методологии не только анализа, но и интерпретации экспериментальных данных, усложнили возникновение единых взглядов на многие структурные характеристики. Современный уровень знаний о САВ, применение интегрального структурного анализа дает возможность определить структурно-групповые параметры, дающие некоторое представление о структурной организации САВ, иногда имеющих отдаленное отношение к реально существующей картине. Можно с определенной долей вероятности установить количество структурных единиц, найти число всех атомов, их относительное расположение в молекуле, содержащейся в усредненном продукте, выделенном из нефти определенного месторождения. Все применяемые для анализа структуры методы основываются на предположениях, базирующихся на данных, полученных при исследовании более летучих фракций нефти и они вряд ли применимы для САВ. Однако наглядность в представлении экспериментальных данных и необходимость упорядочения логических выводов приводила многих исследователей к мысли о построении гипотетических моделей молекул смол, а особенно асфальтенов [233, 242], которые по существу являются научной абстракцией. [c.275]

    Смолы — выделяют адсорбцией фуллеровой землей, активированной окисью алюминия или силикагелем после удаления из битума части, нерастворимой в петролейном эфире. Извлекают смолы из адсорбента экстракцией четыреххлористым углеродом, бензолом, или, лучше всего, смесью бензола г небольшим количеством спирта. Это аморфные вещества от красноватого до темно-коричневого цвета, растворимые в петролейном эфире и в растворителях для асфальтенов. Свое название эти продукты получили, по-видимому, в связи с тем, что при испарении растворителя они, подобно природным и синтетическим смолам, образуют сплошную пленку. Химическое строение смол подобно отроению асфальтенов. [c.7]


Смотреть страницы где упоминается термин Смолы химическое строение: [c.220]    [c.222]    [c.113]    [c.34]    [c.101]    [c.129]    [c.527]    [c.33]    [c.35]    [c.6]    [c.14]    [c.210]    [c.298]   
Битумные материалы (1974) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Пример решения смешанной задачи анализ химического строения фенолформальдегидной смолы

Резольные смолы, образование, влияние химического строения компонентов

Строение химическое

ХИМИЧЕСКОЕ СТРОЕНИЕ СМОЛ И АСФАЛЬТЕНОВ



© 2024 chem21.info Реклама на сайте