Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения ориентация замещения

    Дейтерирование ароматических соединений является типичной реакцией электрофильного замещения, которая подчиняется, всем обычным правилам ориентации электрофильного замещения [64, 167, 179]. Уже отмечалось, что ароматические углеводороды, например бензол, подвергаются дейтерированию при помощи хлористого дейтерия только в присутствии таких катализаторов, как хлористый алюминий, и что, по всей вероятности, реакция идет через образование <г-комплекса [43]. Структура, предложенная для ст-комплекса, аналогична структуре промежуточного соединения в реакции Пфейфера-Визингера с, = Н . [c.408]


    Ароматичность, правило Хюккеля. Электрофильные и нуклеофильные реакции. Электронодонорность и электроноакценторность заместителей. Индуктивный эффект и эффект сопряжения. Теория замещения, ориентанты I и И рода. Реакции электрофильного и нуклеофильного замещения, реакции присоединения. Переходные состояния. Согласованная и несогласованная ориентация. Спектры (ПМР, ИК и УФ) ароматических соединений. [c.250]

    Важный вопрос о влиянии реагента на реакционную способность вещества при химических реакциях и на механизм последних, пожалуй, наиболее подробно разобран на примере изменения правил ориентации нри электрофильном замещении водорода в ароматических соединениях, и ему посвящена вторая глава. [c.308]

    Дибензотиофен вступает в обычные для ароматических соединений реакции замещения. При этом получаются главным образом 2-производные 4-замещенные образуются лишь в очень небольшом количестве. Если исходить из 2-замещенных производных дибензотиофена, то второй заместитель входит в положение 8. Правила ориентации в ряду дибензотиофена аналогичны правилам, действующим в ряду дибензофурана и, повидимому, обусловлены о,л-ориентирующим влиянием гетероатома (серы), что видно из приведенной ниже формулы. [c.128]

    Правила ориентации — взаимосвязь между природой заместителей в исходном ароматическом соединении, природой атакующей частицы и строением конечного продукта в реакциях замещения. [c.376]

    Однако другие данные позволяют предположить, что корреляции с я-электронными плотностями следует скорее всего рассматривать как случайные, по крайней мере в случае дибензофурана. По своей реакционной способности дибензофуран занимает промежуточное положение между дифенилом и нафталином (ср. схему 10, стр. 160, и [45]). Поэтому переходное состояние в реакциях электрофильного замещения дибензофурана должно иметь много общего с переходным состоянием в реакциях этих карбоциклических ароматических соединений. Для всех атомов углерода в дифениле и нафталине я-электронные плотности равны единице, и поэтому ориентация при замещении определяется факторами поляризуемости. Было бы странно, если бы незначительное повыше- [c.164]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]


    Как и сульфирование, реакция алкилирования по Фриделю — Крафтсу обратима. Обычные правила ориентации соблюдаются здесь поэтому только до тех пор, пока процесс протекает при кинетически контролируемых условиях (см. стр. 132), Следовательно, реакция должна быть вовремя прервана, что удается только в том случае, если скорость реакции можно поддерживать маленькой, т. е. если работают при мягких условиях (при низкой температуре и с малыми количествами катализатора) (см. общую методику). Напротив, при термодинамическом контроле, т. е. при более высоких температурах, продолжительном времени реакции, и больших количествах катализатора при алкилировании замещенных ароматических соединений часто получают преимущественно ле/па-замещенные. Кроме того, имеет место дезалкилирование и переалкилирование, особенно при применении сильнодействующих катализаторов. Если обрабатывают, например, п-ксилол хлористым алюминием, то наряду с о- и и -ксилолами. [c.302]

    В большинстве случаев ароматические соединения с различными заместителями получают из более простых ароматических производных реакциями замещения. Поскольку положение вступающей группы определяется уже имеющимися заместителями, часто оказывается необходимым блокировать некоторые положения в ядре, чтобы таким образом добиться требуемой ориентации. Давно известны прямые методы, применяемые для указанной цели эти методы кратко рассматриваются ниже. Блокирующие группы удобно классифицировать как та-ориентанты, с одной стороны, и орто-пара-  [c.195]

    Однако при высокой температуре возможно галогенирование ароматических соединений и по радикальному механизму. Так, бромированне бромбензола при 450—500 °С ведет к преимущественному образованию л1-дибромбензола, тогда как обычно в соответствии с правилами ориентации образуется смесь о- и п-дибром-бензолов. Разница в механизмах галогенирования соединеиий жирного и ароматического рядов ведет к тому, что в присутствии Fe lj галогенирование жирно-ароматических соединений можно направить в ядро, тогда как УФ-облучение и повышенная температура способствуют замещению водородного атома в боковых цепях. [c.390]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации основано на анализе мезомерных граничных структур монозамещенных ароматических соединений. При этом предполагается, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различную плотность электронов. [c.425]

    Мезомерный эффект играет весьма важную роль в ароматическом ряду вследствие самой структуры ароматических соединений именно он определяет ориентацию замещения в бензольном ядре (стр. 178). [c.45]

    Заключая краткое обсуждение различных подходов к оценке реакционной способности ароматических соединений при электрофильном замещении, можно отметить, что они непосредственно связаны с механизмом реакции и соответствуют различным моделям переходного состояния. Предположение, что на ориентацию атакующего реагента непосредственно влияет распределение электронной плотности, означает, что переходное состояние очень близко к исходному и что ориентация в значительной степени определяется электростатическими силами. Корреляция реакционной способности с граничной я-электронной плотностью предполагает взаимодействие с переносом заряда между реагентом и ароматической молекулой, в которой ароматический характер в значительной мере сохранен. Наконец, корреляция реакционной способности со стабильностью а-комплекса и энергией локализации означает, что переходное состояние не имеет ароматического характера и этим сильно отличается от исходного. Имеющиеся экспериментальные данные показывают, что в большинстве случаев реализуется третья модель переходного состояния, и анализ реакционной способности, выполненный на ее основе, дает наиболее надежные результаты. [c.41]

    Предположим, что я-электронные плотности непосредственно определяют ориентацию при электрофильном и нуклеофильном замещении. Как уже отмечалось в разделе I, Б, 2, в этом случае распределение электронов в переходном состоянии должно быть сходным с их распределением в исходном состоянии. Напомним, что при расчете я-электронных плотностей учитывается вклад электронов, находящихся на всех молекулярных орбитах. Поэтому взаимодействие вещества с реагентом должно быть в основном электростатическим, так как взаимодействие с переносом заряда может затрагивать лишь электроны, находящиеся на молекулярных орбитах с наибольшей энергией. Для большинства реакций замещения в ароматических соединениях такая картина переходного комплекса мало соответствует действительному положению, которое выясняется из кинетических данных (раздел 1,А, 3). Поэтому нельзя предполагать, что я-электронные плотности могут играть существенную роль в определении ориентации при замещении. [c.164]

    Пиктографическая орбитальная теория, таким образом, позволяет объяснить ориентацию замещения в реакциях присоединения с отщеплением в аренах более исчерпывающе, чем простая теория резонанса. В частности, она позволяет объяснить изменение отношения орто пара при катионном замещении тем, что происходит изменение от зарядового контроля к орбитальному. Свободнорадикальное замещение в ароматических соединениях легче всего объясняется с помощью теории резонанса, но для анионного замещения снова необходимо применять орбитальную теорию. [c.108]


    Работами Броуна и его школы показано, что правила ориентации при электрофильном замещении водорода в ароматических соединениях зависят также от химической активности реагента. Высокой его активности соответствует нивелирование различий по отношению к реакциям замещения у неравноценных атомов (орто-, мета- и пара-положения). Замещение мало селективно, и выходы изомеров приближаются к условию статистической равновероятности, т. е. к 40% орто-, 40% мета-и 20% пара-изомера. Установлено, что логарифм фактора парциальной скорости реакции замещения в пара-положении (1 /р) линейно связан с фактором селективности Рз, который равен логарифму отношения факторов парциальной скорости замещения в пара- и мета-положения (Рв = % /р//тп)- [c.344]

    Из предложенного механизма реакции (XLVI) очевидно, что выражение скорости реакции замещения должно содержать коэффициент, соответствующий стойкости индивидуального я-комплекса. При обсуждении сравнительных скоростей замещения в различные положения молекулы этот коэффициент будет исключен и наблюдаемые ориентации можно непосредственно связать с относительными скоростями замещения в различные положения. Кроме того, из имеющихся данных видно, что этот коэффициент относительно невелик и мало зависит от структуры ароматического соединения. Следовательно, в случае сильно полярных заместителей, которые сильно влияют на стойкость тг-комплекса, этот коэффициент для <т-комплекса становится столь незначительным, что им можно пренебречь  [c.418]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]

    ЗАМЕЩЕНИЯ В АРОМАТИЧЕСКИХ СОЕДИНЕНИЯХ И ОРИЕНТАЦИЯ ЗАМЕСТИТЕЛЕЙ [c.40]

    При нитровании ароматических соединений возникают три основных вопроса, а именно 1) природа действующего агента, 2) механизм взаимодействия компонентов, 3) ориентация при замещении. В прошлом дискуссии развертывались вокруг последнего из этих трех вопросов. Наше обсуждение в основном будет сконцентрировано на вопросах 1) и 2) и их влиянии на 3). [c.261]

    Распределение электронной плотности в основном состоянии молекулы существенно влияет на особенности реакционной способности вещества, но решающую роль играет строение переходного состояния, не одинаковое в зависимости от типа реагента, от механизма реакции. Из исследований реакций водородного обмена ароматических и, в частности, сераорганических соединений [1, 11] хорошо известно, что с изменением природы реагента выступают на первый план разные электронные эффекты — эффект р-, и-сопряжения при обменных реакциях с кислотами, индукционный эффект и эффект -сопряжения при реакциях с основаниями. Эти реакции служат моделью соответственно электрофильного и про-тофильного замещения водорода. Поэтому правила ориентации замещения в производных бензола зависят не только от природы заместителя в кольце, но и от типа реагента. [c.123]

    Конденсированные бензольные кольца. Электрофильное замещение у бенздиазинов происходит в бензольном кольце [на схемах (236, 237) показана ориентация при нитровании] в случае полностью ароматических соединений для протекания реакции требуются жесткие условия или наличие в молекуле активирующих групп [СНзО в соединении (238)]. Сильные окислители (например, КМп04 в щелочной среде) разрушают конденсированные бензольные кольца до соответствующих карбоновых кислот например, циннолин дает дикарбоновую кислоту (239), хиназолин—кислоту (240) феназин легко окисляется до кислот (241) и (242). [c.137]

    Зависимость направления, по которому пойдет реакция, от природы растворителя и избирательности катализатора была также установлена еще в старых работах Скита [128] и Ауверса [129] и позднее более подробно исследована Лин-стедом [130]. Скита и Ауверс обнаружили, что гидрирование дважды замещенных ароматических соединений на платине при комнатной температуре не приводит к получению тех же самых соединений, которые образуются при гидрировании по методу Сабатье на никелевом катализаторе при высоких температурах. Продукты были изомерными, но не идентичными. Обычно считали, что при гидрировании на платиновом катализаторе образуются г< с-изомеры, а при гидрировании по методу Сабатье над никелем—т/ а с-изомеры. Затем оказалось, что при гидрировании на платиновом катализаторе в кислой среде преобладает г г с-ориептация, а в нейтральной и щелочной среде—транс-ориентация. [c.87]

    Изменение химической природы реагента и свойств среды дает также возможность выявить разные стороны взаимного влияния атомов в молекуле одного и того же вещества. Так, при реакциях электрофильного замещения водорода в ароматических соединениях обычно превалирует эффект сопряжения, а при реакциях протофильного замещения водорода на первый план выступает эффект индуктивного сдвига электронов. Если заменить электрофильный реагент на нуклеофильный, то происходит обращение правил ориентации замещения водорода в ароматическом кольце мало того, они изменяются даже в том случае, когда резко повышается химическая активность pea гснтов данного типа. [c.370]

    В одной из теорий ориентации замещения ароматических соединений, основанной на концепции Вернера о частичном расходовании химического сродства (Флюршейм, 1902 г.), принималось, что некоторые атомы, как, например, пятивалентный атом азота КОз-группы, расходующий все свое сродство на соединение с атомами кислорода, развивает слабое сродство по отношению к углероду, тогда как, например, кислородный атом фенольной групны, связанный одной пз своих валентностей с водородом, сильно влияет на атом углерода, с которым он связан второй валентностью. Таким образом, атом углерода ароматического ядра может быть связан со своим заместителем либо связью с большим сродством, либо связью с малым сродством. В свою очередь этот атом наводит в остатке молекулы поочередно слабые и сильные связи (изображенные тонкими и жирными линиями). В первом случае атомы в орто-пара-положспиях обладают большим остаточным сродством (изображенным длинными пунктирными линиями) и, следовательно, опи более реакционноспособны во втором случае повышенной реакционной способностью характеризуются ета-положения. [c.31]

    В связи с замещением ароматических соединений, обладающих ониевой группой, связанной с ядром, упомянем также следующее при нитровании анилина в присутствии концентрированной серной кислоты образуется более 50% ж-нитроапилина. В этих условиях ориентация определяется группой По той же причине [c.36]

    Малая селективность замещения и недостаточная активность нуклеофильных алкильных радикалов ограничивает препаративную ценность свободнорадикального алкилирования карбоциклических ароматических соединений. Однако в ряду ароматических азагетероциклов, обладающих в протонированной форме высокой электронодефицитностью свободнорадикальное алкилирование является ценным методом синтеза. К его достоинствам относятся высокая селективность, хорошие выходы и простота эксперимента. Роль протонирования может быть проиллюстрирована на примере метилирования. хинолина ди-трег-бутилпероксидом. В отсутствие кислоты метилирование направляется во все возможные положения 2, 4, 5, 8 и остальные (соотношение 1 2,4 1,6 3 1,8), а в присутствии НС1 — исключительно в положения 2 и 4 (1 1) [4, т. 8, с. 225]. В реакциях с протонированными азагетероциклами нуклеофильные алкильные радикалы более активны и более селективны, чем с непротонированными основаниями [1046J. Ориентация при свободнорадикальном алкилировании гетероароматических оснований в присутствии кислот совпадает с ориентацией при нуклеофильном алкилировании (см. разд. 12.2) и противоположна ориентации при электрофильном алкилировании по Фриделю —Крафтсу (см. разд. 6.1). [c.457]

    Дальне. ииее исследование относительной реакционной сг Особпости и соотношения изомеров при различных (кинетически контролируемых) условиях нитрования ароматических соединений, несомненно, очень нужны, хотя и ие следует ожидать, что бу дет обнаружено много новых п непредвиденных явлений. Дело обстоит иначе в случае других реакций замещения в ароматическом ряду, для кинетики которых имеет значение процесс удаления водорода, на что указывает, например, наличие изотопною эффекта. В этих случаях правильность теорий ориентации и реакционной способности в реакциях замещения должна быть очень внимательно проверена однако такие случаи находятся вне темы нашего обзора. [c.272]

    Термодинамическим условием осуществимости спонтанного процесса одноэлектронного переноса является его экзотермич-Ность, для чего потенциал ионизации ароматического субстрата АгН должен быть ниже, чем восстановленной формы электрофила Е . Квантово-химические расчеты с сопоставлением потенциалов ионизации производных бензола и молекулы НОг показывают, что для нитрования толуола и ксилола катионом нитрония МОг более вероятен путь через ион-радикаль-ную пару, для нитробензола и других производных с электроноакцепторными заместителями — только классический полярный механизм, а для бензола — как тот, так и другой [288], Аргументами в пользу механизма с переносом электрона являются согласованность изменений активности ( ароматических соединений и их потенциалов ионизации, соответствие ориентации замещения с распределением спиновой плотности в катион-радикалах, экспериментально показанная возможность генерирования катион-радикалов в условиях, близких к условиям реакции замещения. Эти аргументы касаются обоснования вероятности акта переноса электрона, но не могут служить доказательством того, что он действительно реализуется и, главное, что он лежит на координате реакции. Поэтому особое значение приобретают поиски прямых экспериментальных свидетельств ион-радикального механизма. [c.97]

    Низкую селективность связывают со структурой переходного состояния, близкой к структуре незаряженного радикального о-комплекса типа (141). Однако показано, [354, 355], что при радикальном замещении Заметную, а иногда и решающую роль-играют полярные эффекты. Последнее особенно ярко проявляется, если субстрат или атакующий радикал уже несет заряд,, как, например, при свободнорадикальном алкилировании про-тонйрбванных ароматических азагетероциклов или при аминировании ароматических соединений с электронодонорными заместителями аммониевыми катион-радикалами R2NH+ (см разд. 14.1), Изучение реакционной способности и ориентации, замещения позволяет говорить об злектрофильности или нуклеофильности радикалов, мерой которой может служить значение константы чувствительности р в уравнении Гаммета. [c.122]

    Возможно, нуклеофильность ароматических соединений можно было бы увеличить, используя ароматические реактивы Гриньяра. Тем самым удалось бы также избежать неопределенности в ориентации, которая часто имеет место при прямом замещении. Однако, по-видимому, единственным примером такого метода может служить реакция бромистого фенилмагния с М-бензоилдифенилкетими-ном (см. стр. 87) [19]. [c.72]

    Вследствие необычайно высокой реакционной способности большинства метилоламидов в копцентрированной серной кислоте, что приводит к снижению селективности замещения, многие реакции амидометилирования ароматических соединений осложняются образованием смесей изомеров и полизамещенных продуктов. По этой причине еще исчерпывающе не охарактеризованы многие производные, полученные при реакциях замещения, в которых ориентация не однозначна. В некоторых случаях определяли лишь строение наиболее легко выделяемого из смеси продукта. В других предпринимались лишь попытки разделить смесь и, наконец, иногда, как в случае использования реакции Черняка — Айнгорна, для [c.77]

    Различие величин дипольных моментов ароматических и алифатических соединений может быть использовано для определения характера ориентации при замещениях в ароматическом соединении Именно, во всех случаях, когда 1 АгХ Р-А1кх>0, наблюдается орто- и пара-ориентация. [c.63]

    Из ЭТОГО вытекает первая закономерность замещения — независимость ориентации от характера реакции замещения, так как знак заряда реагента одинаков при сульфировании, нитровании и хлорировании. Следовательно, положение входящего заместителя будет определяться исключительно размещением зарядов в молекуле монозамещенного ароматического соединения. [c.64]

    Ориентацию связывают с полярностью заместителя и реагента. При объяснении правил ориентации, исходя из предельных состояний монозамещенных ароматических соединений, согласно эффекту сопряжения, предполагается, что заместители не только влияют на электронную плотность кольца, но и у каждого углеродного атома создают различные плотности электронов. Заместители первого рода— Доноры электронов — увеличивают электронную плотность углеродных атомов в пара- и орто-положениях, усиливая их реакционную способность по отношению к электрофильным агентам. Заместители второго рода — акцепторы электронов — благодаря эффекту сопряжения оттягивают электроны углеродных атомов бензольного ядра, находящихся в орто- и параположениях, и замещение на электрофильный агент оказывается возможным только в мета-положение. [c.96]

    Как показывают измерения ЯМР , различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как следовало бы ожидать на основании эффекта сопряжения заместителей. Например, у хлор- и бромбензола, фенола и анизола не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при замещении. [c.96]

    Ориентация заместителей в ароматических системах. Замещение в бензоле и в других циклических ароматических системах может происходить под влиянием реагентов всех трех возможных типов, т. е. электрофильных, радикальных и нуклеофильных. В большинстве обычных реакций, как, например, при галогенировании, нитровании, сульфировании, диазосочетании и т. д., замещающий реагент электрофилен, так что само ароматическое соединение должно быть нуклеофильным. Но в реакции Гомберга зе оба реагента несомненно являются радикалами, а при гидролизе, алкоголйзе и аминолизе арилгалогенидов, аминов, эфиров и т. п., замещающий реагент нуклеофилен. (Этот перечень реакций является лишь иллюстративным, а не исчерпывающим в дальнейшем будут упомянуты еще некоторые реакции, принадлежащие к этим трем типам.) [c.368]


Смотреть страницы где упоминается термин Ароматические соединения ориентация замещения: [c.518]    [c.333]    [c.395]    [c.72]    [c.77]    [c.149]    [c.358]    [c.170]    [c.433]   
Механизмы реакций в органической химии (1977) -- [ c.157 , c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Замещения в ароматических соединениях и ориентация заместителей

Ориентация при замещении в беи



© 2025 chem21.info Реклама на сайте