Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции, исследование помощью спектроскопии

    В результате этого спектр веш,ества в инфракрасной области дает сразу много сведений о наличии в веществе различных химических групп. Например, наличие атома кислорода в органическом соединении может означать присутствие в его составе спиртовой ОН, эфирной С — О — С, альдегидной, карбоксильной группы и ряда других. Чтобы установить наличие или отсутствие каждой из этих групп химическими методами, надо провести целую серию химических реакций, типичных для группы каждого типа. С помощью ИК-спектра этот вопрос решается сразу. Поэтому ИК-спектроскопия — один из важнейших физических методов исследования строения сложных молекул. [c.156]


    Спектроскопию комбинационного рассеяния широко используют в биологии, биофизике и медицине для исследования строения молекул и изучения временного хода химических реакций в биологических объектах, поскольку в сложных молекулах колебательные частоты чувствительны к их геометрической структуре и системе связей локализованных групп атомов, изменение которых может происходить в процессе химической перестройки и межмолекулярных взаимодействий. Причем такого рода исследования часто невозможно провести с помощью ИК-спектроскопии, так как большинство представляющих интерес колебательных частот попадает в область спектрального поглощения воды. [c.776]

    С помощью спектроскопии электронного парамагнитного резонанса можно обнаружить неспаренные электроны и получить полезную информацию о ближайшем окружении электрона. Как правило, химической частицей, содержащей неспаренный электрон, является свободный радикал. Таким образом, в принципе можно идентифицировать свободные радикалы и измерять их в очень малых концентрациях (до 10 моль л) при наиболее благоприятных условиях. Благодаря этому ЭПР получил широкое применение при исследовании реакций полимеров. Этот тип спектроскопии оказывает теперь большую помощь при детальных исследованиях таких процессов, как полимеризация, окисление — восстановление, деструкция, радиационные и фотохимические эффекты и даже вальцевание полимеров. [c.407]

    Для повыщения надежности идентификации было проведено предварительное исследование конденсата вулканизационных газов (маслянистые пленки на стенках цеха и оборудовании) с помощью спектральных методов (УФ- и ИК-спектроскопия), элементного анализа, термогравиметрии, ТСХ, селективных химических реакций (применяемых в функциональном органическом анализе), селективной экстракции (извлечение водой и хроматографирование водорастворимых низкомолекулярных спиртов, кетонов, альдегидов и аминов) и др. [25 — 26]. [c.82]

    В основу описанных методов положена адсорбция пахнущих веществ на активированном угле либо паровая дистилляция с последующей экстракцией, групповым разделением и исследованием отдельных фракций с помощью хроматографии, капельных реакций или инфракрасной спектроскопии. Метод инфракрасной спектрофотометрии в сочетании с другими обладает большими возможностями в области изучения химической природы веществ. [c.76]


    Высокая населенность возбужденных молекулярных состояний, достигаемая их селективным возбуждением с помощью лазеров, значительно облегчает применение свободных от доплеровского уширения методов высокого разрешения для детального исследования этих состояний. Поскольку возбужденные состояния играют важную роль во многих химических реакциях, знание их структур и внутренней динамики полезно при изучении кинетики реакций. В этом разделе мы кратко изложим основные принципы следующих методов спектроскопии квантовых биений, пересечения молекулярных уровней и двойного резонанса. [c.297]

    Например, в исследованиях молекулярной структуры с помощью спектроскопа или дифракционных методов мы заранее предполагаем химический состав системы, число и виды атомов, составляющих молекулы, а наши эксперименты позволяют нам пополнить количественную детализацию в отношении междуатомных расстояний — углов и сил. Так же в термодинамических и кинетических исследованиях для усовершенствования молекулярной картины можно использовать измерения. Например, измерение электропроводности растворов проливает свет на поведение ионов, измерение скоростей реакции — на их [c.76]

    Благодаря быстрому возникновению новых и усовершенствованию существуюш,их методов исследования и успехам в области физики и химии твердого тела наши сведения о катализаторах пополняются буквально с каждым днем. В настоящее время применение оптической спектроскопии, радиоспектроскопии и других физических методов позволяет более определенно, чем ранее, говорить об электронном строении, о химической природе активных центров и даже об их пространственной структуре. То же можно сказать и о первичных стадиях превращений катализируемых веществ. И здесь также оказалось возможным при помощи физических методов перейти от гипотетических схем к прямому наблюдению и создать достаточно определенное представление о состоянии реагирующих веществ на поверхности катализатора, как и об его участии в каталитической реакции. [c.175]

    При анализе сырой или вулканизованной резиновой смеси ингредиенты извлекаются из нее путем экстрагирования органическими растворителями. Этот экстракт содержит, как правило, смесь нескольких ингредиентов, и поэтому его предварительно подвергают разделению с помощью хроматографических методов жидкостно-адсорбционной, бумажной или тонкослойной хроматографии. Экстракт, разделенный на фракции, каждая из которых содержит преимущественно один ингредиент, может быть исследован с помощью химических и цветных реакций, а также с помощью физических методов, в частности с помощью инфракрасной или ультрафиолетовой спектроскопии [30]. [c.143]

    Изменения в лигнине при деструкции грибами белой гнили изучают химическими методами, а также с помощью УФ-, И К- и ЯМР-спектроскопии [341, 342] При исследовании процессов биодеструкции лигнина применяют несколько подходов Изучают состав и строение низкомолекулярных продуктов, образующихся в результате биодеструкции лигнина, исследуют реакции биохимического превращения соединений, моделирующих мономерные и [c.178]

    Методика экспериментов. Для исследования химической структуры сополимеров целлюлозы часто применяют метод инфракрасной спектроскопии. Обычно наряду с реакциями сополимеризации, инициированными свободными радикалами, происходит окислительная деструкция целлюлозы, и соответственно увеличение поглощения в области характеристических полос групп С=0 [5]. Ковалентные связи между целлюлозой и полимером могут быть качественно идентифицированы с помощью ИК-спектроскопии. Типичные данные для сополимера целлюлозы с акрилонитрилом приведены в табл. 2. [c.224]

    Вопрос о возможности применения метода инфракрасной спектроскопии к исследованию столь сложных и мало изученных высокомолекулярных составляющих нефтей, какими являются смолы и асфальтены, заслуживает особого внимания. Конечно, пока нельзя рассчитывать на получение при помощи этого метода каких-либо количественных данных, характеризующих групповой состав смо-листо-асфальтеновой части нефти, или, тем более, на идентификацию индивидуальных соединений, входящих в состав этой, очень сложной, физически и химически неоднородной смеси веществ. Однако можно делать достаточно обоснованные и правильные заключения о характере структуры исследуемой фракции высокомолекулярных веществ нефтей, сопоставляя данные инфракрасной спектроскопии, полученные для большого числа различных фракций высокомолекулярных компонентов нефти, выделенных из нефти в результате применения разнообразных методов (хроматография, дробное осаждение, молекулярная перегонка и т. д.), и наблюдая изменения в спектрах поглощения в инфракрасной области от фракции к фракции, происходящие параллельно с изменением химического состава и свойств последних (элементарный и структурно-групповой состав, функциональные группы, молекулярно-поверхностные и электрические свойства а т. д.). Особенно полезной может оказаться инфракрасная спектроскопия для наблюдения за качественными изменениями фракций высокомолекулярных соединений в процессах их химических превращений — в реакциях окисления, гидрирования. В этом случае сравнение инфракрасных спектров фракций до и после реакции свидетельствует весьма наглядно и убедительно о направлении и глубине химических изменений. [c.477]


    Спектроскопию ЯМР высокого разрешения можно применять для изучения самЫх разнообразных химических проблем, решение которых другими методами или невозможно, или очень затруднено. К преимуществам метода можно отнести его быстроту, отсутствие необходимости подвергать деструкции исследуемое вещество и в ряде случаев однозначность получаемой с его помощью информации. Метод ЯМР может быть использован при определении молекулярной структуры, при исследовании стереохимии молекул, заторможенности внутреннего вращения, явлений диссоциации, реакций обмена и процессов образования водородной связи. В этой главе детально будут рассмотрены только две первые области применения ЯМР. [c.220]

    Крайне важное значение в химическом анализе азокрасителя имеет определение азогруппы. Для производственных испытаний существует стандартный метод, однако во многих публикуемых работах по азосоединениям он довольно часто игнорируется, вероятно, из-за того, что использование раствора титановой соли, подверженной окислению воздухом, требует применения специальной аппаратуры. Были исследованы другие методы определения азосвязи, основанные на ее окислении стабильными растворами, но они часто не имеют преимущества по сравнению с классическим. Один из таких способов основан на определении азота, выделяющегося при окислении азокрасителя бихроматом калия [49, 50]. Однако он также требует применения сложной аппаратуры. В другом используется реакция обесцвечивания азосоединения сульфатом церия [50]. Недостаток этого способа заключается в том, что больщая часть исследованных азокрасителеЙ не подвергается количественному окислению. Был также предложен простой, быстрый и точный метод определения сульфогрупп в анионном красителе [51], который включает в себя добавление к анализируемому веществу стандартного раствора солянокислой соли бензидина, удаление нерастворимой бензидиновой соли красителя и титрование избытка бензидина в фильтрате. Для установления строения сульфированных азокрасителей большое значение продолжает иметь элементарный анализ и расщепление азосвязи гидросульфитом натрия с последующей идентификацией образующихся аминов. В случае нерастворимых в воде и катионных красителей эти методы в значительной степени подкреплены современными методами, в частности масс-спектрометрией, с помощью которой можно однозначно получить значение молекулярного веса и элементарный состав, а также ЯМР-спектроскопйей, которая дает ценную информацию о протонах, присутствующих в молекуле. [c.1908]

    До настоящего времени методы импульсного радиолиза применялись при исследовании кинетики реакций, протекающих в объеме раствора. Ценные сведения о механизме радиационно-химических превращения могут быть получены в результате изучения процессов, происходящих в шпорах . Однако современный уровень техники генерации импульсного излучения не позволяет проводить подобные исследования. Действительно, реакции в шпорах заканчиваются за 10 —10" сек. [2], тогда как с помощью существующих источников излучения можно создавать дозы, достаточные для образования сравнительно высоких концентраций продуктов, которые еще могут быть измерены, например, методами оптической спектроскопии, лишь за 10 —10 сек. В литературе описан способ генерации импульсов рентгеновского излучения длительностью 10 сек. [3—5]. Однако дозы за [c.250]

    Совершенно очевидно, что органический капельный анализ, в котором используются только химические методы, не может так широко применяться, как классический макроанализ, в котором используются и физические методы. Химические методы, а также в виде исключения инфракрасную спектроскопию целесообразно применять только при предварительных исследованиях, проводимых для того, чтобы выяснить, какие препаративные процессы следует применить для выделения веществ и получения соответствующих замещенных, которые затем могут быть точно идентифицированы с помощью физических методов. Так как для расширения органического капельного анализа необходимо улучшать существующие методы и продолжать разработку новых реакций, то вполне очевидно, что усилия, приложенные к разрешению этих задач, обогатят также и химические методы классического органического. макроанализа. На основании опытов по применению органического капельного анализа для исследования 4  [c.51]

    Элементный анализ органических соединений дает возможность узнать, из атомов каких элементов состоит молекула данного органического соединения. Однако эти данные недостаточны для определения структуры вещества. Эта задача может быть решена с помощью функционального анализа вещества, при котором используется специфическая реакционная способность отдельных группировок атомов (=С=0 —СООН —ОН и др.). В функциональном анализе применяются химические, физические и физикохимические методы исследования. Наибольшее значение в настоящее время приобретает спектроскопия в инфракрасной и ультрафиолетовой области, ядерный магнитный резонанс, масс-спектрометрия. На основании анализа ИК-, УФ- и ПМР-спектров можно судить о наличии тех или иных функциональных групп в данном веществе и установить его строение. Однако химический качественный анализ на функциональные группы в настоящее время не потерял значения. Для качественных проб используются такие реакции, которые имеют наибольшую избирательность и чувствительность. [c.197]

    Но все же положение не так уж безнадежно, как это может показаться на первый взгляд. Кроме кинетических методов исследования элементарных химических актов существуют и другие методы изучения реакционноспособных систем. В их числе физические методы оптическая спектроскопия, радиоспектроскопия, методы рентгенографического и рентгеноструктурного анализов, масс-спект-рометрия, изучение дисперсии оптического и магнитного вращения. Информация, получаемая с помощью этих методов и надлежащим образом обработанная, позволяет проникнуть в мир элементарных взаимодействий электронов и ядер. А для того чтобы разобраться в том, как происходит химическое преобразование на атомно-молекулярном и электронном уровнях, надо ввести определенные микроскопические представления о структуре молекул и постараться понять макроскопические свойства реакционных систем как следствие внутренних особенностей молекул. Это очень важный и, кстати, очень увлекательный момент исследования реакций. Вряд ли кто из химиков откажет себе в удовольствии сконструировать молекулярный механизм изучаемой реакции. Но сколь трудна эта прогулка по внутреннему миру элементарных актов , может понять только тот, кто не однажды испытал па себе горечь разочарования. [c.42]

    Одно из важнейших достоинств динамического механического метода заключается в том, что он позволяет изучать не только свойства конечных продуктов реакции, но и изменение этих свойств в ходе самой реакции. Измерения динамических механических свойств используют для изучения кинетики процесса отверждения - полимеров. Обычно для исследования отверждения применяют методы, основанные на оценке степени превращения реакционноспособных групп с помощью химического анализа, ИК-спектроскопии, калориметрии и т. д. Однако чувствительность этих методов резко Снижается на конечных стадиях отверждения (при больших степенях конверсии), которые обычно в значительной мере определяют оптимальные свойства поперечно сшитых полимеров. [c.276]

    Химическое отделение Направление научных исследований аналитическая химия определение следов элементов с помощью нейтронно-активационного анализа каталитические реакции в газовой фазе электроосаждение термодинамика растворов рентгеноструктурный анализ неорганических комплексов ЯМР и ИК-спектроскопия электронные свойства атомов и радикалов пиролиз в пламени органические комплексы германия, молибдена и ванадия комплексные соединения переходных металлов органические перекиси органические соединения серы химия ацетилена и алициклических соединений химия силоксанов полимеры и переработка пластмасс. [c.251]

    Направление научных исследований синтез органических соединений серы, фосфора, фтора, производных ацетилена, разных специальных продуктов, биологически активных веществ, биологически разлагаемых детергентов полимеризация и изучение свойств высокомолекулярных соединений (привитые сополимеры, термостойкие полимеры, ионообменные мембраны, адгезивы) разработка и внедрение новых методов синтеза на пилотных установках, методов анализа в области применения ядохимикатов улучшение техники контроля и техники безопасности исследования в области ферментов и ферментационных процессов изучение микроструктуры соединений с помощью рентгеновских лучей, электронной микроскопии, ядерного магнитного резонанса, УФ-, ИК-спектроскопии и спектров комбинационного рассеяния микроанализ физико-химические исследования полимеров (хроматография, техника адсорбции, кинетика реакций, катализ) изучение свойств твердых тел (например, углей, графитов), аэрозолей очистка воды и воздуха от промышленных загрязнений. [c.341]

    Мейбум [24] указывал, однако, что такая формулировка принципа неопределенности неприменима, если уширяющиеся пики начинают перекрываться, так как она предсказывает неограниченное уширение при возрастании скорости обмена, что, как мы увидим, не соответствует наблюдаемым фактам). Оптические спектры характеризуются высокими частотами наблюдения (10 —10 Гц) поэтому это уширение не будет заметно при разрешающей способности оптических спектрометров, за исключением случаев очень малых времен (б я 10- —10- з с и менее). Время жизни конформаций и ионизованных состояний органических молекул обычно намного больше. Однако в ЯМР-спектроскопии частоты наблюдения в 10 раз ниже, а ширина линий может составлять 1 Гц и менее, вследствие чего сигналы обменивающихся модификаций могут отстоять друг от друга всего на несколько герц. В этих условиях слияние сигналов индивидуальных модификаций может наступить даже при больших временах жизни порядка 10 —10 с. Если же времена жизни существенно короче, обе формы будут представлены одним узким сигналом и станут практически неразличимы. Для химии очень важно, что такие времена жизни (10 —10- с) соизмеримы со скоростями химических реакций и процессов изомеризации. Путем соответствующего видоизменения уравнений Блоха (см. разд. 1.7) можно получить аналитическое выражение для формы спектральных линий при уширении или слиянии пиков, с помощью которого были измерены скорости самых разнообразных химических процессов. Поскольку в практике ЯМР-исследований полимеров этот метод используется сравнительно редко, мы не станем останавливаться на нем подробно, тем более, что этот вопрос широко освещен в литературе. Нам важно лишь отметить, что ЯМР-спектры молекул, которые могут иметь различную конформацию (а именно к таким молекулам и относится большинство полимеров), усреднены по всем возможным конформациям. Спектры ЯМР позволяют получить важные данные о предпочтительности той или иной конформации, но в общем случае эти данные представлены в неявном виде. [c.48]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Изучение природы активных центров, а также строения и свойств поверхностных соединений, образующихся при взаимодействии молекул с поверхностью катализатора, позволяет глубже проникнуть в механизм гетерогенного катализа и ближе подойти к решению задачи научного подбора катализаторов. Широко используемые в настоящее время кинетические методы исследования каталитических реакций не могут дать прямую информацию о промежуточных стадиях каталитического процесса. Многие детали каталитических реакций не удается выяснить также при помощи других физико-химических методов исследования, например применением изотопов. В ряде случаев эта задача может быть успешно решена применением инфракрасной спектроскопии, которая позволяет следить за превращением молекул непосредственно на поверхностж катализатора, что открывает большие возможности для изучения промежуточных стадий каталитических реакций [1, 2]. [c.253]

    Исследования триплетных сос.тояний молекул, в том числе карбенов и нит-ренов, с помощью ЭПР - относительно новый и сложный раздел химической физики, и публикации рассчитаны в основном на читателя, имеющего глубокие специальные знания. Однако подобные исследования представляют большой интерес для химиков, поскольку открывают перспективы в области изучения механизмов химических реакций, позволяют получать данные о свойствах короткоживу-щих громежуточных частиц. Можно назвать, пожалуй, лишь одну книгу, в которой достаточно доходчиво изложены сведения по спектроскопии ЭПР, необходимые для понимания специальных работ это учебник Керрингтона и Мак-Лечлана [12], однако в нем, естественно, в первую очередь рассматриваются обшив Boipo H магнитного резонанса. [c.146]

    Существует несколько причин, ограничивающих широкое применение методов ИК-спектроскопии и комбинационного рассеяния при исследовании низкотемпературных реакций. Прежде всего, это технические трудности при конструировании криостатов. Пожалуй, наибольшие трудности возникают из-за хрупкости материалов, применяющихся для изготовления оптических окон. В работе [108] описана конструкция стеклянного криостата для ИК-спектроскопии, а в [165]—металлического для исследования химических реакций методом матричной изоляции. Использование оптических окон из Ag l и AgBr для криостатов предложено в [166]. Эти окна очень удобны, не трескаются, их можно впаивать с помощью простого способа, который описан там же. Применяя такие окна, можно записывать ИК-спектры до 23 и 35 мкм соответственно. [c.44]

    Хенникера рассмотрено влияние, оказываемое бензольными кольцами на <жойства пластмасс, и указаны различные возможные методы анализа содержания этих колец в пластмассах и готовых изделиях. Приведен краткий обзор химических методов анализа и более подробно проанализированы возможности использования ИК-спектроскопии для исследования состава пластмасс. Приведены ИК-спектры поглощения двух полианилино-формальдегидных смол. Методы идентификации аминопластов при помощи характерных реакций и спектроскопии, а также при помощи хроматографии на бумаге описаны в других работах . Сообщается о применении полярографического метода для идентификации пластмасс приведены важнейшие характеристики плотность, показатель преломления, температура текучести, температура разложения, растворимость и характерные реакции для пластмасс, в том числе и аминопластов . [c.351]

    СН(СбНб)2 опровергается соответствующими химическими реакциями и исследованием с помощью инфракрасной спектроскопии. [c.575]

    Конечные продукты реакции, как правило, определяют путем проведения макроэлектролиза при контролируемом потенциале с последующим их выделением из раствора н анализом с помощью методов, обычно применяемых в органической химии (определение физических констант вещества, элементный анализ, ЯМР- и ИК-спектроскопия, масс-спектрометрия, хроматография и т. д.). Если эти продукты образуются в результате медленных химических превращений в объеме раствора, следующих за переносом электрона, то исследование кинетики таких химических стадий электрохимическими методами оказывается малоэффективным. Здесь более пригодны методы изучения химической кинетики в гомогенной фазе. Нечувствительность электрохимических методов эксперимента к достаточно медленным химическим превращениям в растворе является причиной того, что во многих случаях выводы о природе конечного продукта реакции, сделанные на основе данных препаративного электролиза и анализа поляризационных кривых, измеренных в стационарных или нестационарных условиях, оказываются различными, поскольку относятся к неодинаковым временным интервалам, охватывающим неодинаковое число стадий суммарного процесса. [c.195]

    За последнее десятилетие метод ЛМР постепенно занял ведущее положение в биохимических и биофизических исследованиях. Как в органической химии, так и в биохимии ЯМР-спектроскопии является прежде всего аналитическим методом, с помощью которого можно либо подтвердить, либо опровергнуть предполагаемую структуру вновь синтезированных соединений. Кроме этой области примененияЯМР, ориентированной прежде всего на химические приложения метода, можно получить также информацию о пространственном расположеш1и атомов, конфигурации биологически важных молекул и молекулярных комплексов. Такая информация позволяет внести существенный вклад в выяснение механизмов ферментативных превращений и путей прохождения биохимических реакций (табл.2.1). [c.53]

    В связи с высокодисперсным характером и низкими температурами синтеза шпинелей на углеродных материалах необходимо специальное выяснение вопроса об их коррозионной стабильности, особенно в условиях катодной поляризации. Никель-ко-бальтовая шпинель устойчива при ,>0,75 В [103]. При , < <0,5 В шпинельная структура полностью разрушается до простых оксидов. В работах [109, 110] было проведено детальное исследование химической и электрохимической стабильности кобальтита кобальта. Поверхностный состав катализатора контролировался с помощью ИК-спектроскопии, а концентрация ионов кобальта в электролите — измерением спектров в УФ-об-ласти. Исследования, проведенные в отсутствие поляризации, показали, что в 7 М КОН при 20° С через 100 ч устанавливается стационарная поверхностная концентрация шпинели, мало отличающаяся от исходного значения. При повышении температуры и концентрации щелочи скорость разрушения шпинели возрастает. В щелочном электролите разрушение шпинели идет по реакции [c.192]

    Определение положения заместителей в ферроценовом ядре с помощью ПМР-спектроскопии является значительно более точным и на сегодняшни день самым быстрым и надежным методом. До сих пор большинство авторов [4, 28, 31, 61—64а] учитывало при структурном анализе химические сдвиги только кольцевых протонов. Для замещенных метилметаллоценов, которые играют важную роль нри стереохимических исследованиях, быстрое и простое определение изомерного состава, а также установление строения возможно на основе химических сдвигов и относительных интенсивностей сигналов протонов метильных групп [596]. Для некоторых важных реакций замещения (таких, как ацетилирование, формилирование, бензоилирование и реакция Манниха) при помощи ЯМР-анализа были определены отношения изомеров и, исходя из них, рассчитана реакционная способность отдельных положеншг [596]. [c.59]

    Методы определения технического и химического классов красителей на вторичном ацетате целлюлозы, а также способы идентификации индивидуальных дисперсных красителей описаны в работе [18]. Дифференциацию красителей одного цвета (желтый, оранжевый и др.) проводят с помощью флуоресценции в УФ-свете, отношения к диазотированию и сочетанию (ароматическиеамины), восстановлению, окислению, а также различными капельными пробами, исследованием цвета раствора в концентрированной серной кислоте. Указанные приемы часто достаточны для идентификации большого числа красителей. В случае, когда красители показывают идентичные реакции, их подвергают хроматографическому анализу или исследуют с помощью ИК-спектроскопии. [c.415]

    В работе [154] рассматриваются химические методы анализа карбонильных и ненасыщенных функциональных групп в линейных полиакролеинах, которые включают реакции с фенил-гидразином, гидроксиламииом, озоном, иодом и ацетатом ртути в метаноле, а также методы ИКС. Большое число химических и физических аналитических методик исследования полиакролеинов было использовано в работе [155]. Обсуждались [156] методы анализа линейных полиакролеинов, полученных анионной полимеризацией. Эти полимеры имели структурные повторяющиеся ациклические единицы типа —СН(СНО) —СНа—, —СНз—СН(СНО)— и СН(СН = СН)—О—. Определены природа и содержание каждой структурной единицы и дана оценка их распределения вдоль полимерной цепи. Для этого использовали методы ИК-спектроскопии, определения карбонильных групп при помощи гидрохлорида гидроксиламина, определения винильных групп озонолизом и ненасыщенности метоксимерку-рированием. [c.480]

    При исследовании, полиэтерификации ФК и АК (или СК) с ЭГ (двухстадийный синтез в расплаве при 200° С) было обнаружено [57], что сигнал олефиновых протонов ФК состоит из трех линий с химическими сдвигами 6,79 (а), 6,74 (Ь) и 6,69 (с) мд., причем соотношение интенсивностей этих линий изменяется в ходе процесса (рис. 3.9). Пик с принадлежит оле-финовым протонам свободной ФК, пик Ь - олефиновым протонам звеньев ФК на концах цепи полиэфира (в форме кислых эфиров) —О—(0)С—СН= =СН—С (О) —ОН и пик а — протонам звеньев ФК в середине цепи (в форме полных эфиров) -0-(0)С-СН=СН-С(0)-0-. Нужно отметить, что оле-финовые протоны ФК в форме кислых эфиров неэквивалентны и образуют систему типа АВ. Однако поскольку для данной системы разность химических сдвигов < 6 Гц, то при константе спин-спинового взаимодействия 17 Гц расстояние между двумя центральными пиками квартета АВ будет составлять около 1 Гц, расстояние между внешними пиками — около 35 Гц, а соотношение интенсивностей внутренних и внешних пиков квартета будет, соответственно, примерно 35 1. В результате внешние линии квартета тонут в шумах, а внутренние сливаются в один пик, площадь которого можно, с точностью 2-3%, считать пропорциональной содержанию кислых эфиров ФК в реакционной смеси. Таким образом, с помощью ПМР-спектроскопии можно изучать кинетику накопления и расходования в системе исходных, промежуточных (без их вьщеления) и конечных продуктов реакции. По кинетической кривой промежуточного продукта реакции - кислых эфиров ФК, имеющей характерный вид кривой с максимумом, оценена относительная жтивность двух реакционных центров ФК в реакции полиэтерификации константа скорости реакции первой СООН-группы ФК превьшгает (примерно вдвое) константу скорости реакции второй группы. [c.107]

    Исследования строения. С 1950 г. в химической литературе все чаще появляются статьи о применении спектроскопии ЯМР для установления строения органических соединений. Лишь один пример из исследований, проведенных в лаборатории одного из авторов этой книги, показывает, какую большую информацию можно иногда получить даже при очень поверхностном исследовании с помощью спектров ЯМР. Была проведена фотохимическая реакция внутреннего замыкания бициклогеитадиена с использованием бензофенона в качестве фотосенсибилизатора (стр. 630). [c.640]

    К настоящему времени известно большое число моно-я-циклопентадие-нильных соединений переходных металлов, содержащих один или несколько других лигандов (карбонильные, нитрозильные, фосфиновые, олефиновые, ареровые и др.). С помощью физико-химических исследований (ИК-, ЯМР-, масс-спектроскопия, рентгеноструктурный анализ и др.) показано, что в этих комплексах природа связи gHg — М подобна таковой в ферроцене. Циклопентадиенильное кольцо ароматично. Для ряда комплексов осуществлены реакции ароматического замещения (ацилирование, алкилирование по Фриделю — Крафтсу и другие). [c.65]


Смотреть страницы где упоминается термин Химические реакции, исследование помощью спектроскопии: [c.121]    [c.56]    [c.394]    [c.375]    [c.224]    [c.1712]    [c.1712]    [c.87]    [c.255]   
ЯМР в одном и двух измерениях (1990) -- [ c.621 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция исследование

спектроскопия реакции



© 2025 chem21.info Реклама на сайте