Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефтяные углеводороды, газовая сажа

    Около 28 полициклических и полициклических ароматических углеводородов было обнаружено в газовой саже из серусодержащих нефтяных продуктов при анализе на короткой стеклянной колонке типа [c.158]

    Горячий газ пиролиза, насыщенный низкОкипящими углеводородами, отмывается в скруббере 8 легким бензином от сажи и нефтяного битума. Эмульсия сажи в бензине отделяется от газового потока в циклоне 9 и возвращается в реактор. Окончательная конденсация паров бензина происходит в орошаемом водой холодильнике 10. Бензин после отделения от воды в сепараторе 11 возвращают в скруббер 8. [c.116]


    Порошкообразный углерод не спекается даже при температурах порядка 2500 °С и давлении 280 кГ/см сажу же графи-тизировать вообще невозможно. В частности, невозможность графитизировать ламповую сажу объясняется тем, что она образуется в результате реакции, протекающей в газовой фазе и содержит лишь незначительное количество ядер графита. Нефтяной кокс получается в результате жидкофазной реакции, которая способствует образованию сравнительно крупных кристаллов графита неправильной формы. Есть основание считать, что первоначальный размер кристаллитов зависит от химической структуры нефтяных углеводородов и характера оборудования, применяемого при получении кокса [12]. [c.61]

    Реакция сильно эндотермична и технические методы получения ацетилена различаются по способам подвода тепла, например посредством вольтовой дуги, путем сжигания части метана непосредственно в реакционном пространстве и др. Аналогичным путем, но при несколько более низких температурах, ацетилен может быть получен из высших углеводородов—пропана, бутана пл(г легких нефтяных погонов. Реакция получения ацетилена нз углеводородов протекает сложно и сопровождается образованием большого количества побочных продуктов—этилена, углерода в виде сажи, гомологов ацетилена. Разработанные методы разделения газовой смеси на отдельные компоненты с последующей тщательной очисткой позволяют выделить ацетилен в достаточно чистом виде. [c.94]

    Углеводородные газы служат сырьем для получения технического углерода издавна, несмотря на высокое отношение в них Н С (от 2,5 до 4,0). Их можно применять в качестве технологического топлива или в качестве технологического топлива и сырья в производствах саж. В последнем случае получают газовую, печную и термическую сажу. Доля сажи, изготовляемой нз углеводородных газов, пз года в год сокращается за счет увеличения доли саж, вырабатываемых пз жидкого сырья. Жидкие нефтяные фракции для производства саж используют сравнительно недавно (15—20 лет) доля жидких нефтяных фракций в настоящее время составляет более 70% от всего количества сырья она имеет тенденцию к увеличению. Из различных видов жидкого сырья предпочтение отдается газойлю термического и каталитического крекинга, а. также экстрактам, полученным на основе ароматических концентратов (содержание ароматических углеводородов не менее 80—85%) В последнее время начинают вовлекать в производство сажи также смолу пиролиза. Выход сажн из сырья пропорционален его индексу корреляции Ик (см. с. 146) с его увеличением выход сажи растет. Индекс корреляции сырья для производства саж составляет около 100 в настоящее время ведутся работы для увеличения его до 120 и более. [c.221]


    Одним из основных методов получения газообразных непредельных углеводородов является пиролиз, т. е. нагревание нефтяного сырья при нормальном давлении и температуре 700° С и выше. Для пиролиза обычно применяются трубчатые печи непрерывного действия, обогреваемые топочными газами. Нефтяное сырье пропускается через теплообменники, в которых оно нагревается и испаряется. Пары пропускаются затем в реакционную камеру (печь), в которой происходит процесс пиролиза с образованием твердых (сажа), жидких и газообразных продуктов. Затем из газовой смеси выделяется этилен. , [c.60]

    Переработка нефтяного газа на газобензиновых и сажевых заводах и получение ценных продуктов (сжиженные газы, сажа, газовый бензин), или индивидуальных углеводородов является наиболее квалифицированным его использованием. При этом чем выше извлечение отдельных углеводородов от потенциального содержания их в нефтяном газе и чем выше чистота этих углеводородов, тем выше ценность их в качестве сырья для нефтехимических производств и для других целей использования. [c.10]

    Существуют способы получения полуактивных газовых печных саж, при которых наряду с природным газом используется и жидкое сырье. К природному газу прибавляют нефтяные остатки, каменноугольные смолы или побочные продукты, получаемые при переработке нефти. Известен способ производства печной сажи с применением в качестве сырья смеси природного газа с парами жидких углеводородов в соотношении 2 1 по массе. Добавление жидкого сырья значительно повышает производительность реакторов и выход сажи и в то же время улучшает ее свойства. [c.135]

    Высокотемпературный крекинг (670—720° С) нефтяного сырья, называемый пиролизом, проводится для получения газов, служащих исходным сырьем для органического синтеза и в том числе и для синтеза высокооктановых компонентов моторного топлива и различных жидких продуктов с высоким содержанием ароматических углеводородов. По температурному режиму пиролиз является наиболее жесткой формой термического крекинга и характеризуется более глубоким разложением, углеводородов нефти. Реакции при пиролизе в большинстве случаев, как правило, являются необратимыми, т. е. продукты первичного распада сразу же подвергаются дальнейшему превращению и не способны образовывать исходный продукт. Таким образом, пиролиз жидких углеводородов — многофазный высокотемпературный процесс, в котором разложение исходных углеводородов идет в гомогенной среде и в результате образуется газовая, жидкая и твердая фазы (кокс, сажа). На процесс пиролиза и выход продуктов влияют следующие факторы  [c.88]

    Катализаторы, содержащие высококремнеземные цеолиты, позволяют перерабатывать легкие и тяжелые вакуумные газойлевые нефтяные фракции 300—500 °С и выше с минимальным образованием кокса и сухого газа и с получением высокооктанового бензина, а также ценного газового сырья для нефтехимических синтезов и сырья для производства сажи. Переработка тяжелых углеводородов нефти стала возможной благодаря большей устойчивости цеолитных катализаторов к отравлению азотистыми и металлоорганическими соединениями по сравнению с устойчивостью стандартных аморфных алюмосиликатных катализаторов. Кроме того, на кристаллах цеолита Ыа" -, Са-+- и (РЗЭ) " -ионных форм сгорание кокса начинается при температуре на ПО °С ниже, чем на матрице — аморфном алюмосиликате [84]. Это способствует более медленному процессу старения цеолитных катализаторов. [c.85]

    Ассортимент саж, имеющихся в настоящее время на мировом рынке, так широк, что практически можно найти подходящий сорт для изготовления любого из рассмотренных типов печатных красок. Сажи подразделяются на три типа, четко отличающихся по происхождению и свойствам./Самая низкосортная сажа получается при неполном сгорании остатков канифоли, древесных смол, растительных масел или нафталина. Такая печная сажа применяется главным образом в газетных красках вследствие ее низкой стоимости и большой маслоемкости, позволяющей получать оттиски высокой плотности, что необходимо для этого вида печати. Сажи среднего качества получают при сжигании в форсунках при ограниченной подаче воздуха легких или тяжелых алифатических углеводородов. Эти продукты известны под названием ламповой сажи . Лучши. сорта сажи получаются при сжигании в герметических камерах природных или попутных нефтяных газов, богатых низкомо-лекулярными насыщенными углеводородами. Эти сажи известны под названиями газовая сажа , нефтяная сажа и arbon Ыаск (в США). [c.230]


    В качестве сырья используют наиболее широко нефтяной термогазойль (см. 7.4.1), а также антраценовое масло, хризеновую фракцию и пековый дистиллят — продукты коксохимии. Некоторые марки саж получают из газового сырья. Жидкое сажевое сырье представляет собой углеводородные фракции, выкипающие при температуре выше 200 °С и содержащие значительное количество ароматических углеводородов (60 — 90 % масс.). [c.70]

    В настоящее время ацетилен получается в промышленности также из парафиновых углеводородов (метана, этана, бутана) или легких нефтяных погонов. Основным условием образования ацетилена из метана является кратковременное, исчисляемое долями секунды пребывание исходного углеводорода в реакционной зоне при высокой температуре (1400—1600 °G) и последующее резкое охлаждение газовой смеси- Необходимая для протекания реакции высокая температура может быть создана электрической дугой (в этом случае процесс шЗыва хся электрокрекингом) или сжиганием части исходного или какого-либо другого углеводорода в кислородном или воздушн-ом пламени (процесс, называемый термоокислительным пиролизом). Во всех случаях в результате реакции образуется сложная газовая смесь, содержащая наряду с ацетиленом непрореагировавшие исходные углеводороды, этилен, водород, высшие ацетиленовые углеводороды, сажу и другие соединения. Чистый ацетилен выделяется обычно из этой смеси в результате серии последовательных операций с помощью селективных растворителей. [c.387]

    Нагревание капелек топлива, их испарение, смешение пара с воздухом и самоускоряющиеся химические реакции, имеющие место в фазе /, происходят одновременно. Для типов топлив, применяемых в двигателе Дизеля, протекание химических реакций ссответствует описанному в гл. IV. Фотографии Рот-рока и Уолдрона (34] показывают, что всспламенекие начинается в небольших зонах вблизи границ отдельных струй впрыскиваемого топлива. Зарождение цепной реакции, вероятно, имеет место в газовой фазе. Вероятным механизмом процесса является образование радикалов благодаря крекингу, так как температура сжатого воздуха довольно высока (от 600° до 800°С). Как показано в гл. IV, непосредственное взаимодействие углеводорода и кислорода в газовой фазе является в лучшем случае медленным процессом. Возможно также, что образование перекисей происходит на поверхности раздела жидкость — воздух, обеспечивая, таким образом, образование носителей цепи. Как только скорость реакции в какой-нибудь точке достигает взрывного предела, происходит быстрое распространение пламени сквозь граничные слои, окружающие отдельные струи впрыскиваемого топлива, и по участкам камеры сгорания, уже наполненным взрывной смесью. За этим следует быстрый рост давления (фаза 2). Слишком быстрый рост давления может вызвать появление ясно слышимого стука, что нежелательно. Очевидно, что чем больше период задержки, тем больше накапливается взрывной смеси и тем сильнее будет детонация. Опыт показывает, чю для более легких топлив задержка воспламенения зависит в основном от химических, а не от физических свойств топлива, в то время как для более тяжелых топлив, как, например, для нефтяных остатков, большую роль играют физические свойства — вязкость и быстрота испарения. Поэтому для этих последних задержка воспламенения заметно зависит от степени распыла при впрыске. В фазе 3, где температура очень высока, испарение и сгорание происходят очень быстро, так что основным фактором является скорость впрыска. Однако здесь возникает еще проблема местного накопления паров топлива, в результате которого происходит очень нежелательное образование сажи. Эта сажа участвует в четвертой фазе догорания" вместе с поздно испаряюп имся топливом, попавшим на стенки при впрыске. В конце этой фазы в камере сгорания остаются продукты неполного сгорания от легкой пушистой сажи, выделившейся из газовой фазы, до смолистых и угольных остатков, полученных (очевидно, из топлива, разбрызганного по стенкам) процессом, часто включающим пиро- [c.407]


Смотреть страницы где упоминается термин Нефтяные углеводороды, газовая сажа: [c.268]    [c.268]    [c.340]    [c.402]    [c.513]    [c.611]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая сажа



© 2025 chem21.info Реклама на сайте