Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лондона потенциальная, зависимость

    Метод Эйринга и Поляни. В основу расчета поверхности потенциальной энергии системы трех атомов положена формула Лондона (см. 1). Потенциальная энергия взаимодействия атомов в двухатомной молекуле (энергия связи) берется из спектроскопических данных. Эта энергия для молекулы АВ полагается равной Uab Qab + Jab, где Qab и Jab —кулоновская и обменная энергии взаимодействия. Далее предполагается, что при любых межатомных расстояниях доля кулоновской энергии р Q (Q + J) сохраняется постоянной, меняющейся в диапазоне 0,1—0,15. При таком положении Qab = Р Уав, Jab = (I — р) L ab. Для нахождения зависимости Q и / от гдв используют формулу Морзе [c.88]


    В 1927 г. немецкие ученые У. Гейт-лер и Ф.Лондон провели квантовомеханический расчет взаимодействия атомов водорода при образовании молекулы На-В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. 13). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая 1). При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Расстояние между ядрами в молекуле водорода Го (длина связи) равно 0,074 нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание и энергия системы возрастает (кривая 2). Квантовомеханические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами [c.42]

    Поскольку все молекулы содержат колеблющиеся электроны, постольку между ними всегда действуют силы притяжения, изменяющиеся обратно пропорционально шестой степени межмолекулярного расстояния. Этот результат, полученный Лондоном [7], широко используется в физической химии. Его можно легко сопоставить с опытом, поскольку экспериментальные данные по скрытым теплотам исиарения дают падежные сведения о зависимости потенциальной энергии молекул от межмолекулярных расстояний, а данные по дисперсии света дают значения поляризуемости молекул а и частоты электрических колебаний v (см. гл. IX). Межмолекулярные силы, вызванные связью квантованных электрических осцилляторов, изменяются обратно пропорционально седьмой степени расстояния эти силы часто называются лондоновскими или дисперсионными силами. Вольно и менее точно их называют силами Ван-дер-Ваальса главным образом потому, что они дают объяснение сил притяжения, действующих между неполярными газовыми молекулами. Однако следует учесть, что в уравнении состояния Ван-дер-Ваальса принимается, что силы взаимодействия молекул изменяются обратно пропорционально четвертой степени межмолекулярного расстояния. [c.169]


    Если в уравнениях (2) параметр С вычислить не из эксперимента, а по формуле Лондона, т. е. положить С = С, то возможность найти оптимальные потенциальные кривые уменьшается. Но при этом в выражение для энергии ТУ (Ло) вводятся поляризуемости и потенциалы ионизации / , вследствие чего удается получить зависимость W от характеристических параметров взаимодействующих атомов. Эту зависимость следует рассматривать как чисто качественную, однако именно в этом заключена польза формулы (1). [c.82]

    В результате Гейтлер и Лондон получили уравнения, позволяющие найти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами этих атомов. При этом оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины взаимодействующих электронов При совпадающем направлении спинов (рис, 26, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами не возникает. При противоположно направленных спинах (рис. 26, кривая б) сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При г = го система обладает наименьшей потенциальной энергией, т. е, находится в наиболее устойчивом состоянии дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула Нг — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга. [c.120]

    Здесь Aij, Bif, С//— параметры, зависящие от типов двух взаимодействующих атомов (алифатический углерод, кетонный углерод и т. п.). Вклад А в основном определяет потенциальную энергию модели твердых сфер [уравнение (21.2)], поскольку с увеличением показателя а зависимость от расстояния гц первого слагаемого в уравнении (21.3) быстро растет. Однако, чтобы значение функции eij с ростом Г// быстрее сходилось к нулю, требуется дополнительная составляющая 5, которую обычно истолковывают как вклад, отвечающий за слабые вандерваальсовы силы притяжения между взаимодействующими атомами (дисперсионные силы Лондона, вызываемые возникновением наведенных дипольных моментов). Величина этого вклада по сравнению с общей ошибкой вычислений достаточно мала, и основная роль второй составляющей — обеспечить равенства близкодействующих сил на коротких расстояниях. Третья составляющая энергии С отвечает за кулоновское электростатическое взаимодействие, обусловленное наличием дробных заря- [c.562]

    Потенциальная кривая зависимости и цд от где г - расстояние между парой валентно-несвязанных атомов, следует из анализа отклонений свойств реального и идеального газов. Исследования Т. Хилла [81], М. Кривого и Е. Мейзона [82] рассеяния молекулярных пучков позволили установить зависимость /вдв(г)для взаимодействий атомов инертных газов, которые были распространены на атомы соответствующих галоидов. Кривая С/ д как функция расстояния между атомами гелия представлена на рис. 1.2. На больших расстояниях действуют силы притяжения, энергия которых пропорциональна, согласно теории Лондона, 1/г . На более коротких расстояниях при достаточном сближении атомов их ван-дер-ваальсовы радиусы перекрываются, и отталкивание между ядрами и между электронами доминируют над силами притяжения. Энергия отталкивания обычно аппроксимируется как 1/г или ехр(-/). Таким образом, для описания невалентных взаимодействий наиболее широко используются две аналитические формы потенциала потенциал Дж. Леннарда-Джонса ("6-12") С/вд (г) = (-Л/г ) + (В/г 2) и потенциал А. Букингема ("6-ехр") С/вдв( ) = = (Л/г ) + В ехр(-Сг), где Л, 5 и С - эмпирические параметры. Потенциальные кривые Леннарда-Джонса и Букингема очень похожи различие заключается лишь в том, что потенциал "6-ехр" имеет ложный минимум при г < 1,0 А и при / = О величина С/ дв стремится к [c.114]

    А. И. Китайгородский, К. В. Мирская (Институт элементоорганических соединений АН СССР, Москва). Как отмечено в докладе Д. П. Пошкуса (стр. 9), наиболее важной проблемой в молекулярной теории адсорбции является определение потенциальной энергии адсорбированных молекул в зависимости от их координат. При адсорбции неполярных молекул на неполярном твердом теле энергия взаимодействия молекул с поверхностью и друг с другом наиболее просто может быть рассчитана путем введения полуэмпирических потенциальных функций для взаимодействия частиц. Основываясь па теории дисперсионных сил Лондона [1] и следуя Мюллеру [2], А. В. Киселев и Д. П. Пошкус с соавторами провели ряд вычислений энергии адсорбции органических молекул на графите по аддитивной схеме, рассматривая молекулу и графитовую сетку как совокупность силовых центров и подбирая полуэмиириче-ские параметры в потенциалах для разного рода таких центров. В качестве силовых центров авторы выбирали либо целые молекулы (как в метане), либо группы атомов (СН, СНа, СНз), либо отдельные атомы (С и Н), не отдавая предпочтения ни одной из этих моделей. [c.55]


    В гипотезе Аррениуса в скрытой форме содержалась возможность логического перехода к истолкованию энергии Е как энергии, необходимой для образования из исходных молекул переходного состояния, или активированного комплекса. Представлялось заманчивым найти путь априорного расчета энергии активации. В 1928 г. Лондон и предложил основанный на применении квантов охимических методов путь для расчета энергии активированного комплекса, исходя из предполагаемой его структуры, как и при расчете энергии стабильных молекул — исходных веществ реакции. В принципе, применяя этот метод, можно рассчитать весь энергетический путь реакции — от исходных веществ через активированный комплекс до конечных ее продуктов. Диаграммы, показывающие изменение потенциальной энергии в зависимости от изменения межатомных расстояний, позволяют судить об оптимальном пути реакции. С работой Эйринга и Поляни (1931) такой метод построения поверхностей потенциальной энергии нашел широкое применение в химической кинетике. [c.152]

    При сближении двух водородных атомов фазовые волны обоих вступают в резонанс, что приводит, как в случае маятников, к двум возможным частотам. Формально этому отвечает два решения волнового уравнения Шредингера для системы из двух атомов. Оба решения относятся к обоим вышеуказанным состояниям системы симметричному и антисимметричному. Гейтлери Лондон сделали расчет изменения взаимной потенциальной энергии обоих атомов в зависимости от их расстояния для обоих состояний. Результаты этого расчета изображены на рис. 125. Кривая / отвечает симметричному состоянию, а кри- [c.318]

    Как показывают опыт и ргсчет, при изменении межатомных расстояний изменяется потенциальная энергия системы, шотому, например, что по мере приближения атома X к молекуле 2 ему первоначально приходится преодолевать силы отталкивания ее электронных оболочек. Собственно говоря, определение функции (7=/(Г]Г2) является определением энергии активации реакции. В принципе потенциальную энергию трехатомной системы в зависимости от Г1 и Г2 можно рассчитать теоретически, пользуясь так называемым уравнением Лондона  [c.184]

    Потенциальная кривая зависимости от г, где г - расстояние между парой валентно-несвязанных атомов, следует из анализа отклонений свойств реального и идеального газов. Исследования Т. Хилла [81], М. Кривого и Е. Мейзона [82] рассеяния молекулярных пучков позволили установить зависимость /вдц(г)для взаимодействий атомов инертных газов, которые были распространены на атомы соответствующих галоидов. Кривая i/вдв как функция расстояния между атомами гелия представлена на рис. 1.2. На больших расстояниях действуют силы притяжения, энергия которых пропорциональна, согласно теории Лондона, 1/г . На более коротких расстояниях при достаточном сближении атомов их ван-дер-ваальсовы радиусы перекрываются, и отталкивание между ядрами и между электронами доминируют над силами притяжения. Энергия отталкивания обычно аппроксимируется как 1/г или ехр(-/-). Таким образом, для описания невалентных взаимодействий наиболее широко используются две аналитические формы потенциала потенциал Дж. Леннарда-Джонса ("6-12") /вдв( ) = -I- (В/г ) и потенциал А. Букингема ("6-ехр") = [c.114]


Смотреть страницы где упоминается термин Лондона потенциальная, зависимость: [c.27]    [c.127]    [c.11]   
Современная общая химия Том 3 (1975) -- [ c.0 ]

Современная общая химия (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Лондон

Потенциальная яма



© 2025 chem21.info Реклама на сайте